Refine Your Search

Topic

Search Results

Article

SAE International extends call for abstracts, seeks submissions for AeroTech conference

2022-08-11
Engineering Events staff at SAE International in Warrendale, Pennsylvania, have extended the call for abstracts through September 21 for the organization’s AeroTech aerospace and defense technology conference, which will take place at the Fort Worth Convention Center in Fort Worth, Texas, March 14-16, 2023. Visit the AeroTech call for abstracts page for more information and to get started.
Training / Education

Polymers Bundle

Anytime
This course discusses the properties and applications of thermoplastics, including an overview of the amorphous and semi-crystalline molecular regions found in thermoplastics, and describes common processing methods for thermoplastics, such as injection molding and extruding. Thermosets This course introduces participants to the key characteristics and types of thermosets as well as common processing methods. Courses listed above are available only as part of a TooliingU bundle.  Custom bundles of any five or more ToolingU courses are available upon request as a Corporate Learning Solution.
Journal Article

Numerical Analysis of Armored Fighting Vehicle Escape Hatch Subjected to Mine Blast Loading Using Coupled Eulerian-Lagrangian Technique

2023-03-30
Abstract This article describes the research work taken to compare the effect of air blast and surface-buried mine blast loading on an armored fighting vehicle (AFV) escape hatch, using the coupled Eulerian-Lagrangian (CEL) technique. Two types of escape hatch were considered for the study, namely, the flat plate version and double-side curved-plate version. To evaluate the research methodology used in this investigation, initially, a published experimental work on a circular plate subjected to air blast was chosen and a benchmark simulation was carried out using the CEL technique to establish the simulation procedure. Then the established procedure was utilized for further analysis. It was observed that the variation in the deformation between the published literature and the simulation work was well within the acceptable engineering limits.
Training / Education

Nonferrous Metals Bundle

Anytime
Nonferrous materials are malleable, are non-magnetic, and have no iron content which gives them higher resistance to rust and corrosion. The following five eLearning courses are included in the Nonferrous Metals bundle.  Each course is approximately one-hour in duration. See Topics/Outline for additional details. Introduction to Physical Properties  This course provides an an overview of manufacturing materials and their physical properties, including thermal, electrical, and magnetic properties and introduces volumetric characteristics, such as mass, weight, and density.
Technical Paper

Methodology and Results of Testing an Impact of F-34 Fuel on the Engine Reliability

2020-09-15
2020-01-2133
An application of the new kind of the fuel for the diesel engine requires to conduct the qualification tests of the engines powered by this his fuel which allow assessing an impact of fuel on the engine reliability. Such a qualification test of the piston and turbine engines of the aircraft stationed on the ground and land vehicles is described in the NATO standardisation agreement (STANAG) 4195 as the AEP-5 test. The methodology and selected results of the qualification tests of the SW-680 turbocharged multi-purpose diesel engine fuelled with F-34 fuel have been presented in this paper. A dynamometric stand with the SW-680 engine has been described. Based on the preliminary results of the investigation it has been found that a change in a type of the fuel from IZ-40 diesel fuel into F-34 kerosene-type one has reduced a maximum engine torque by about 4%. This has been primarily due to a lower fuel density of F-34 by about 3%.
Training / Education

Metals Bundle

Anytime
Almost 75% of all elements are metals. Metals can be classified as either ferrous or non-ferrous and generally conduct electricity and heat well. Most metals are malleable and ductile and are, in general, heavier than other elemental substances. The following six eLearning courses are included in the Materials bundle. Each course is approximately one-hour in duration. See topics/outline for additional details. Introduction to Metals, Ferrous Metals, Nonferrous Metals, Classification of Steel, Essentials of Heat Treatment of Steel Exotic Alloys
Training / Education

Introduction to Materials Bundle

Anytime
The following six eLearning courses are included in the Introduction to Materials bundle.  Each course is approximately one-hour in duration. See Topics/Outline for additional details. Introduction to Physical Properties  This course provides an an overview of manufacturing materials and their physical properties, including thermal, electrical, and magnetic properties and introduces volumetric characteristics, such as mass, weight, and density.
Training / Education

High Temperature Materials Bundle

Anytime
Metals and alloys have different melting ranges depending on their chemistry. High temperature metals are much harder at room temperature, have exceptionally high melting points (usually above 2000 degree Celsius), and are resistant to wear, corrosion and deformation. The following five eLearning courses are included in the High Temperature Materials bundle.  Each course is approximately one-hour in duration. See Topics/Outline for additional details.
Technical Paper

Guiding Framework for Feasibility Evaluation of Localised Production and Drop in Blending of Aviation Turbine Fuel with Bio Derivatives for Non-civilian Air Bases

2011-10-18
2011-01-2792
The potential for small scale local production of Bio fuel derivatives and their partial blending with aviation turbine fuel in non-civilian bases has been investigated. A feasibility study on technical readiness levels for process viability is presented in the paper. Demand side analysis for various blend mixes and corresponding requirement for production facilities and land area requirements are performed. Sustainable production and blending operations are the basis for selection of key performance indicators for the air base. Guiding framework and readiness evaluation processes are delineated for the base. Qualitative inference is combined with quantitative scoring system within the framework.
Training / Education

Fundamentals of Fatigue Analysis

Fatigue is a structural failure mode that must be recognized and understood to develop products that meet life cycle durability requirements. In the age of lightweighting, fatigue strength is an important vehicle design requirement as engineers struggle to meet stringent weight constraints without adversely impacting durability. This technical concept course introduces the fatigue failure mode and analysis methods. It explains the physics of material fatigue, including damage accumulation that may progress to product failure over time, and it provides the needed foundation to develop effective fatigue prediction capabilities.
Training / Education

Fluids for Aerospace Hydraulic Systems

This four-hour short course provides an introduction to fluids for aerospace hydraulic systems. Topics covered include an introduction to basics fluid properties, rheology, tribology, and fluid product development. In addition, the history and performance of different classes of fluids are discussed in detail, and specific failure modes such as erosion and sludge formation will be described. Along with an introduction to fluid degradation, information on used oil analysis test methods and interpretation will be provided.
Training / Education

Ferrous Metals Bundle: Steel and Cast Iron

Anytime
Ferrous metals contain iron and are prized for their tensile strength and durability. Most are magnetic and contain a high carbon content which generally makes them, with the exception of wrought iron and stainless steel, vulnerable to rust. The following seven eLearning courses are included in the Ferrous Materials Bundle: Steel and Cast Iron. Each course is approximately one-hour in duration. Modules include: Introduction to Physical Properties, Introduction to Mechanical Properties, Introduction to Metals, Hardness Testing, Ferrous Metals, Classification of Steel, Essentials of Heat Treatment of Steel.
Training / Education

FEA Beyond Basics: Nonlinear Analysis Web Course RePlay

Anytime
Finite Element Analysis (FEA) has been an indispensable tool for design simulation for several decades but this wide spread use has been limited to simple types of analyses. Relatively recently, more advanced analyses have given easy-to-use interfaces enabling design engineers to simulate problems formerly reserved for analysts. FEA Beyond Basics targets the FEA users who wish to explore those advanced analysis capabilities. It will demonstrate how to move past the ubiquitous linear structural analysis and solve structural nonlinear problems characterized by nonlinear material, large displacements, buckling or nonlinear connectors.
Technical Paper

Evaluation of Coated and Uncoated Inserts of the Cutting Tool for Improved Machinability of Inconel 825 Alloy

2024-02-23
2024-01-5026
The limitations of commonly used materials such as steel in withstanding high temperatures led to exploring alternative alloys. For instance, Inconel 825 is a nickel-based alloy known for its exceptional corrosion resistance. Thus, the Inconel 825 is used in various applications, including aerospace, marine propulsion, and missiles. Though it has many advantages, machining this alloy at high temperatures could be challenging due to its inadequate heat conductivity, increased strain hardening propensity, and extreme dynamic shear strength. The resultant hardened chips generated during high-speed machining exhibit elevated temperatures, leading to tool wear and surface damage, extending into the subsurface. This work investigated the influence of varying process settings on the machinability of Inconel 825 metal, using both uncoated and coated tools.
Technical Paper

Computing Remaining Fatigue Life Under Incrementally Updated Loading Histories

2018-04-03
2018-01-0623
After manufacture, every military vehicle experiences a unique history of dynamic loads, depending on loads carried, missions completed, etc. Damage accumulates in vehicle structures and components accordingly, leading eventually to failures that can be difficult to anticipate, and to unpredictable consequences for mission objectives. The advent of simulation-based fatigue life prediction tools opens a path to Digital Twin based solutions for tracking damage, and for gaining control over vehicle reliability. An incremental damage updating feature has now been implemented in the Endurica CL fatigue solver with the aim of supporting such applications for elastomer components. The incremental updating feature is demonstrated via the example of a simple transmission mount component. The damage state of the mount is computed as it progresses towards failure under a series of typical loading histories.
Technical Paper

Comparison and Evaluation of Performance, Combustion and Particle Emissions of Diesel and Gasoline in a Military Heavy Duty 720 kW CIDI Engine Applying EGR

2020-09-15
2020-01-2057
Investigating the impact of Gasoline fuel on diesel engine performance and emission is very important for military heavy- duty combat vehicles. Gasoline has great potential as alternative fuel due to rapid depletion of petroleum reserves and stringent emission legislations, under multi fuel strategy program for military heavy- duty combat vehicle. There is a known torque, horsepower and fuel economy penalty associated with the operation of a diesel engine with Gasoline fuel. On the other hand, experimental studies have suggested that Gasoline fuel has the potential for lowering exhaust emissions, especially NOx, CO, CO2, HC and particulate matter as compared to diesel fuel. Recent emission legislations also restrict the total number of nano particles emitted in addition to particulate matter, which has adverse health impact.
Journal Article

Combined Battery Design Optimization and Energy Management of a Series Hybrid Military Truck

2018-10-31
Abstract This article investigates the fuel savings potential of a series hybrid military truck using a simultaneous battery pack design and powertrain supervisory control optimization algorithm. The design optimization refers to the sizing of the lithium-ion battery pack in the hybrid configuration. The powertrain supervisory control optimization determines the most efficient way to split the power demand between the battery pack and the engine. Despite the available design and control optimization techniques, a generalized mathematical formulation and solution approach for combined design and control optimization is still missing in the literature. This article intends to fill that void by proposing a unified framework to simultaneously optimize both the battery pack size and power split control sequence. This is achieved through a combination of genetic algorithm (GA) and Pontryagin’s minimum principle (PMP) where the design parameters are integrated into the Hamiltonian function.
X