Refine Your Search

Topic

Author

Search Results

Technical Paper

Warrior Injury Assessment Manikin Oblique Vertical Testing

2018-11-12
SC18-22-0008
Abstract - The Warrior Injury Assessment Manikin (WIAMan) was developed to assess injury in Live Fire Test and Evaluation (LFTE) and laboratory development tests of vehicles and vehicle technologies subjected to underbody blast (UBB) loading. While UBB events impart primarily vertical loading, the occupant location in the vehicle relative to the blast can result in some inherent non-vertical, or off-axis loading. In this study, the WIAMan Technology Demonstrator (TD) was subjected to 18 tests with a 350g, 5-ms time duration drop tower pulse using an original equipment manufacturer (OEM) energy attenuating seat in four conditions: purely vertical, 15° forward tilt, 15° rearward tilt, and 15° lateral tilt to simulate the partly off-axis loading of an UBB event. The WIAMan TD showed no signs of damage upon inspection. Time history data indicates the magnitude, curve shape, and timing of the response data were sensitive to the off-axis loading in the lower extremity, pelvis, and spine.
Research Report

Unsettled Issues Concerning Integrated Vehicle Health Management Systems and Maintenance Credits

2020-05-27
EPR2020006
The “holy grail” for prognostics and health management (PHM) professionals in the aviation sector is to have integrated vehicle health management (IVHM) systems incorporated into standard aircraft maintenance policies. Such a change from current aerospace industry practices would lend credibility to this field by validating its claims of reducing repair and maintenance costs and, hence, the overall cost of ownership of the asset. Ultimately, more widespread use of advanced PHM techniques will have a positive impact on safety and, for some cases, might even allow aircraft designers to reduce the weight of components because the uncertainty associated with estimating their predicted useful life can be reduced. We will discuss how standard maintenance procedures are developed, who the various stakeholders are, and – based on this understanding - outline how new PHM systems can gain the required approval to be included in these standard practices.
Article

Turn growing complexity into competitive advantage through digitalization

2021-03-10
While the pandemic continues, aerospace companies are rising to embrace new and emerging challenges at a time when there’s so much innovation. This innovation can be seen in the emergence of urban air mobility (UAM), the rebirth of supersonic flight, the drive towards a “zero emission” aircraft, and the continued use of autonomous drones for delivery, freight, search & rescue, and defense. There are exciting new developments in space as companies are developing products for commercial exploration and space tourism, and new ways to launch satellites. A new generation of engineering is also emerging in the defense sector and its development of not only aircraft, but also ships, tankers, and even flight trainers.
Journal Article

Threat Identification and Defense Control Selection for Embedded Systems

2020-08-18
Abstract Threat identification and security analysis have become mandatory steps in the engineering design process of high-assurance systems, where successful cyberattacks can lead to hazardous property damage or loss of lives. This article describes a novel approach to perform security analysis on embedded systems modeled at the architectural level. The tool, called Security Threat Evaluation and Mitigation (STEM), associates threats from the Common Attack Pattern Enumeration and Classification (CAPEC) library with components and connections and suggests potential defense patterns from the National Institute of Standards and Technology (NIST) Special Publication (SP) 800-53 security standard. This article also provides an illustrative example based on a drone package delivery system modeled in AADL.
Research Report

The Use of eVTOL Aircraft for First Responder, Police, and Medical Transport Applications

2023-09-26
EPR2023020
Advancements in electric vertical takeoff and landing (eVTOL) aircraft have generated significant interest within and beyond the traditional aviation industry. One particularly promising application involves on-demand, rapid-response use cases to broaden first responders, police, and medical transport mission capabilities. With the dynamic and varying public service operations, eVTOL aircraft can offer potentially cost-effective aerial mobility components to the overall solution, including significant lifesaving benefits.
Magazine

Tech Briefs: May 2018

2018-05-01
New Technologies Tackle UAV Challenges Robotic Applique Kits Leverage Existing Assets Educating UGVs Implementing AI Advancements in Thermal Image Training Data Sets Protecting Critical Data on Unmanned Underwater Platforms Advancements Made to the Wingman Software-in-the-Loop (SIL) Simulation: How to Operate the SIL New features include the creation of virtual environments that match real-world gunnery test courses. Soldier-Robot Team Communication: An Investigation of Exogenous Orienting Visual Display Cues and Robot Reporting Preferences The effective use of robots to conduct dangerous missions depends on accurate man-machine communications. Soft Robotic Fish Swims Alongside Real Ones in Coral Reefs GPS Enabled Semi-Autonomous Robot Combining GPS signals with acoustic and encoder data gives a robot the ability to determine its location and orientation within a reference frame.
Magazine

Tech Briefs: August 2018

2018-08-01
Designing a High-Speed Decoy Unmanned Aerial Vehicle (UAV) Using Thermoplastics in Aerospace Applications In-Flight Real-Time Avionics Adaptation Using Turbine Flow Meters for Aerospace Test and Measurement Applications Communicating from Space: The Front End of Multiscale Modeling Laser-Based System Could Expand Space-to-Ground Communication Hydraulic Testing of Polymer Matrix Composite 102mm Tube Section Research could lead to development of a composite material that can be processed at a low temperature and still be used at 1000°F. Permeation Tests on Polypropylene Fiber Materials Study attempts to determine if polypropylene nanofiber materials can be used in air filtration systems to remove toxic vapors. Inter-Laboratory Combat Helmet Blunt Impact Test Method Comparison Ensuring consistent test methods could reduce the risk of head injuries.
Journal Article

TOC

2024-02-12
Abstract TOC
Technical Paper

System Concept Effectiveness

1966-02-01
660728
Frequently, a choice between system concepts must be made on the basis of something other than a detailed evaluation of the design effectiveness of these systems. This paper develops a rudimentary analysis process for use in addressing this problem.
Technical Paper

Simultaneous Design and Control Optimization of a Series Hybrid Military Truck

2018-04-03
2018-01-1109
This paper investigates the fuel saving potential of a series hybrid military truck using a simultaneous battery pack design and powertrain supervisory control optimization algorithm. The design optimization refers to the sizing of the Lithium-ion battery pack in the hybridized configuration. On the other hand, the powertrain supervisory control optimization finds the most efficient way to split power demands between the battery pack and the engine. Most of the previous literatures implement them separately. In contrast, combining the sizing and energy management problem into a single optimization problem produces the global optimal solution. This study proposes a novel unified framework to couple Genetic Algorithm (GA) with Pontryagin’s Minimum Principle (PMP) to determine the battery pack sizing and the power split control sequence simultaneously.
Technical Paper

Second-Life of Electric Vehicle Batteries from a Circular Economy Perspective: A Review and Future Direction

2023-08-28
2023-24-0151
The second-life use of batteries from electric vehicles (EV) represents an excellent and cost-effective option for energy storage applications, including the control of fluctuations in energy supply and demand or in combination with solar photovoltaic and wind turbine. Indeed, these batteries are normally replaced from EV use before the end of their service life, when they still have 70-80% of the original capacity. Depending on the cell chemistry and the specific design, such batteries can still be employed in less stressful applications than the automotive one, including commercial, residential, and industrial applications. With the aim to promote the transition to a circular closed-loop economy for spent traction batteries, this study consists in a systematic literature review of available options for reusing EV batteries as a storage system in a factory environment, highlighting benefits and critical aspects.
Magazine

SAE Truck & Off-Highway Engineering: April 2018

2018-04-05
Connectivity takes center stage Telematic links have become the norm, helping fleet owners and operators improve efficiency and letting OEMs predict component failures. More power, less noise, fewer emissions These key attributes drive development of new generators both big and small. TARDEC pursues advanced power generation U.S. Army, GM collaborate on fuel-cell-generated electricity to power the vehicle's propulsion system and onboard electronics, while providing off-vehicle power via an Exportable Power Take-Off unit. Developing an alternative engine concept Ricardo's CryoPower engine leverages two unique combustion techniques for reduced emissions and fuel consumption-liquid nitrogen and split combustion. Long-haul trucking and stationary power generation will be the first beneficiaries of the technologies. Technology time-warp The road to autonomous driving has been under construction for decades, as showcased by SAE's Mobility History Committee at the 2018 WCX in Detroit.
Article

SAE International extends call for abstracts, seeks submissions for AeroTech conference

2022-08-11
Engineering Events staff at SAE International in Warrendale, Pennsylvania, have extended the call for abstracts through September 21 for the organization’s AeroTech aerospace and defense technology conference, which will take place at the Fort Worth Convention Center in Fort Worth, Texas, March 14-16, 2023. Visit the AeroTech call for abstracts page for more information and to get started.
Standard

S400 Copper Media Interface Characteristics Over Extended Distances

2019-07-09
CURRENT
AS5643/1A
This SAE Aerospace Standard (AS) establishes guidelines for the use of IEEE-1394-2008 Beta (formerly IEEE-1394b) as a data bus network in military and aerospace vehicles. It encompasses the data bus cable and its interface electronics for a system utilizing S400 over copper medium over extended lengths. This document contains extensions/restrictions to “off-the-shelf” IEEE-1394 standards, and assumes that the reader already has a working knowledge of IEEE-1394. This document does not identify specific environmental requirements (electromagnetic compatibility, temperature, vibration, etc.); such requirements will be vehicle-specific and even LRU-specific. However, the hardware requirements and examples contained herein do address many of the environmental conditions that military and aerospace vehicles may experience. One should refer to the appropriate sections of MIL-STD-461E for their particular LRU, and utilize handbooks such as MIL-HDBK-454A and MIL-HDBK-5400 for guidance.
Article

Quality management experts provide guidance on AS9100 standard

2021-11-04
Quality management professionals across the global aerospace and defense community are convening for one hour – Wednesday, October 27th, starting at 10 am Pacific Daylight Time (PDT) – to discuss the AS9100 international standard. Register to take part in the free AeroTech webinar, hosted by SAE International and Tektronix, designed to help manufacturers, contractors, and subcontractors throughout the global aviation, space, and defense supply chain keep pace with and meet the requirements of AS9100 international quality management system standard.
Journal Article

Predictive Modeling of Aircraft Dynamics Using Neural Networks

2022-05-25
Abstract Fighter pilots must study models of aircraft dynamics before learning complex maneuvers and tactics. Similarly, autonomous fighter aircraft applications may benefit from a model-based learning approach. Instead of using a preexisting physics model of a given aircraft, a machine learning system can learn a predictive model of the aircraft physics from training data. Furthermore, it can model interactions between multiple friendly aircraft, enemy aircraft, and the environment. Such a system can also learn to represent state variables that are not directly observable, as well as dynamics that are not hard coded. Existing model-based methods use a deep neural network that takes observable state information and agent actions as input and provides predictions of future observations as output. The proposed method builds upon this approach by adding a residual feedforward skip connection from some of the inputs to all of the outputs of the deep neural network.
Standard

Perspectives on Integrating Structural Health Monitoring Systems into Fixed-Wing Military Aircraft

2019-09-18
CURRENT
AIR6245
This SAE Aerospace Information Report (AIR) is prepared for stakeholders seeking information about the evolution, integration, and approval of SHM technologies for military aircraft systems. The report provides this information in the form of (a) two military organizations’ perspectives on requirements, and (b) general SHM challenges and industry perspectives. The report only provides information to generate awarness of prespectives for military aircraft and, hence, assists those who are involved in developing SHM systems understanding the broad range of regulations, requirements, and standards published by military organizations that are available in the public domain from the military organizations.
X