Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

“Test Methodology Development for Rig Level Validation of Light Weight Stabilizer Link of EV Bus Suspension”

2024-01-16
2024-26-0357
In the modern and fast growing automotive sector, reliability & durability are two terms of utmost importance along with weight & cost optimization. Therefore it is important to explore new technology which has less weight, low manufacturing cost and better strength. The new technology developed always seek for a quick, cost effective and reliable methodology for its design validation so that any modification can be made by identifying the failures. This paper presents the rig level test methodology to validate and to correlate the CAE derived strain levels, life cycle & failure mode of newly developed light weight stabilizer link for EV Bus suspension
Technical Paper

“Dynamic Analysis of Cabin Tilting System of Heavy Trucks Using ADAMS-View for Development of a Software Interface for Optimization”

2008-10-07
2008-01-2683
Design of a Cabin Tilting System of heavy trucks, a multi degree of freedom mechanism, is a challenge. Factors like adequate tilting angle, cabin styling, packaging, non interference of tilting system with ride comfort, forces in the system, specifications of the hydraulic system, are all very important for designing the system. Numerous considerations make the design process highly iterative hence longer design time. This paper primarily focuses on Kinematics and Dynamic analysis of the system in ADAMS and validation of system with real time testing results. Intention of this work is to make a parametric ADAMS model and link it to a Knowledge Based Engineering application to facilitate designer to quickly carry out design iterations for reducing development time. The Knowledge Based Engineering software is made using object oriented language called ‘Object Definition Language’ which has been developed using C and C++ software languages.
Technical Paper

modeFRONTIER for Virtual Design and Optimization of Compact Heat Exchangers

2014-09-30
2014-01-2406
The main purpose of this study is the development of an innovative methodology for Heat Exchangers (HE) design to replace the conventional design procedures. The new procedure is based on the definition of a software package managed by modeFRONTIER, a multi-objective optimization software produced by ESTECO, able to create HE virtual models by targeting several objectives, like HE performance, optimal use of material, HE minimal weight and size and optimal manufacturability. The proposed methodology consists first in the definition of a workflow for the automatic CFD simulation of a parametric model of a periodic HE cellular element.
Journal Article

Yaw Stability Enhancement of Articulated Commercial Vehicles via Gain-Scheduling Optimal Control Approach

2017-03-28
2017-01-0437
In this paper, a gain-scheduling optimal control approach is proposed to enhance yaw stability of articulated commercial vehicles through active braking of the proper wheel(s). For this purpose, an optimal feedback control is used to design a family of yaw moment controllers considering a broad range of vehicle velocities. The yaw moment controller is designed such that the instantaneous tractor yaw rate and articulation angle responses are forced to track the target values at each specific vehicle velocity. A gain scheduling mechanism is subsequently constructed via interpolations among the controllers. Furthermore, yaw moments derived from the proposed controller are realized by braking torque distribution among the appropriate wheels. The effectiveness of the proposed yaw stability control scheme is evaluated through software-in-the-loop (SIL) co-simulations involving Matlab/Simulink and TruckSim under lane change maneuvers.
Technical Paper

Weld Process Modeling and It's Importance in a Manufacturing Environment

1998-04-08
981510
An important emerging technical area is computer-based modeling of the various manufacturing processes that are used in many diverse industries. These models are used to optimize manufacturing techniques to reduce fabrication costs and improve the service performance. One manufacturing process important in steel fabrication is welding. It can be a useful tool to aid in reducing fabrication costs and service durability by optimizing the weld process and is the subject of this paper.
Technical Paper

Weld Durability Analysis by Equilibrium-Equivalent Structural Stress Approach

2006-10-31
2006-01-3576
Welding has been used extensively in automotive components design due to its flexibility to be applied in manufacturing, high structural strength and low cost. To improve fuel economy and reduce material cost, weight reduction by optimized structural design has been a high priority in auto industry. In the majority of heavy duty vehicle's chassis components design, the ability to predict the mechanical performance of welded joints is the key to success of structural optimization. FEA (finite element analysis) has been used in the industry to analyze welded parts. However, mesh sensitivity and material properties have been major issues due to geometry irregularity, metallurgical degradation of the base material, and inherent residual stress associated with welded joints. An approach, equilibrium-equivalent structural stress method, led by Battelle and through several joint industrial projects (JIP), has been developed.
Technical Paper

Weight Reduction of Shifter Forks using Steel Inserts

2013-09-24
2013-01-2444
Shift quality of a manual transmission is a critical characteristic that is requires utmost care by the designers while structuring the transmission. Shift quality is affected by many factors viz. synchronizer design, shift fork design, shifter design, gear design, transmission oil selection etc. Designers have realized that shift fork is critical element for improving shift feel of a transmission. This paper focuses upon the reduction in weight of the overall transmission shift system by using steel inserts in aluminum shifter forks. No compromise on the stiffness and strength of the shift fork of a manual transmission is done. Stiffness and strength of shifter fork is optimized using contact pattern analysis and stiffness analysis on MSC Nastran. All the subsystem (i.e. synchronizer and the shift system component) are constrained to optimize the shift fork stiffness. A 5-speed manual transmission is used as an example to illustrate the same.
Technical Paper

Weight Optimized Design of a Front Suspension Component for Commercial Heavy Trucks

2004-10-26
2004-01-2709
Design of suspension systems for Heavy Trucks is always challenging due to the heavy loads the system is exposed to and the long life requirements for the total system. Historical solutions were over designed structures to get the needed life and reliability. This always meant heavier parts. In today's economy, the vehicle weight of commercial heavy trucks is a very important feature for our customers and the end user. Lighter, well-designed suspension components provide better ride quality to the drivers through lower un-sprung weight, lower initial costs and greater payloads. The latest available structural optimization techniques are a business requirement for tomorrow's products. This paper describes the developed methodology used by DANA Engineers to design a weight optimized upper control arm for Commercial Heavy Trucks in step by step fashion. The method starts with determining the loads on the component part.
Technical Paper

Weight Optimization of Off Highway Equipment Assembly

2011-10-06
2011-28-0096
Weight reduction in construction equipment is sought to achieve energy conservation and also to comply with the vehicle safety and compliance regulations, managing the weight distribution across the rear and the front end of the equipment to achieve the optimum balancing. Of late the thrust on product weight has increased along with reduced time to market, leading to increased usage of structural optimization methods. This has been further supported by the availability of high performance computing at relatively low cost. VOC and CTQ tools provided the motivation and initial screening of the design variables. The structural optimization software provides an integrated platform for analysis as well as optimization of components. In this work, an optimization tool has been used for size and shape optimization of a construction equipment assembly and a commercial FEA package was used for verification and validation of the results.
Technical Paper

Virtual Test of Manufacturing Process Effect on Injector Design

2015-09-29
2015-01-2794
Diesel exhaust after treatment solutions using injection, such as urea-based SCR and lean NOx trap systems, effectively reduce the emission NOx level in various light vehicles, commercial vehicles, and industrial applications. The performance of the injector is crucial for successfully utilizing this type of technology, and a simulation tool plays an important role in the virtual design, that the performance of the injector is evaluated to reach the optimized design. The virtual test methodology using CFD to capture the fluid dynamics of the injector internal flow has been previously developed and validated for quantifying the dosing rate of the test injector. In this study, the capability of the virtual test methodology was extended to determine the spray angle of the test injector, and the effect of the manufacturing process on the injector internal nozzle flow characteristics was investigated using the enhanced virtual test methodology.
Technical Paper

Vibro-Acoustic Analysis for Modeling Propeller Shaft Liner Material

2019-06-05
2019-01-1560
In recent truck applications, single-piece large-diameter propshafts, in lieu of two-piece propshafts, have become more prevalent to reduce cost and mass. These large-diameter props, however, amplify driveline radiated noise. The challenge presented is to optimize prop shaft modal tuning to achieve acceptable radiated noise levels. Historically, CAE methods and capabilities have not been able to accurately predict propshaft airborne noise making it impossible to cascade subsystem noise requirements needed to achieve desired vehicle level performance. As a result, late and costly changes can be needed to make a given vehicle commercially acceptable for N&V performance prior to launch. This paper will cover the development of a two-step CAE method to predict modal characteristics and airborne noise sensitivities of large-diameter single piece aluminum propshafts fitted with different liner treatments.
Technical Paper

Vibration Reduction in Diesel Fuel System Using 1D Simulation

2012-09-24
2012-01-1971
Good performance of fuel system is critical for fuel efficiency, combustion process, emissions, start ability, acceleration and combustion noise. The fuel system design is a complicated process. Simulation tools are playing an important role in virtual design. They are used to evaluate performance, optimize the design, and provide understanding for performance or durability related problem. This paper illustrates how a 1D system simulation tool is utilized to investigate an observed failure of a high pressure hose. The simulation identifies the dominant modes in the fuel system and determines the engine speed at which the fuel system mode is excited. At various engine speeds, the simulation investigates the magnitude of pressure pulsation in the high pressure hose of the fuel system. Finally, the 1D simulation provides the design optimization approach to suppress the oil pressure pulsation and reduce the structure vibration.
Technical Paper

Vibration Isolation Analysis and Optimization of Commercial Vehicle Cab Suspension System

2018-04-03
2018-01-1405
This paper starts with study on the transfer characteristics, and the vibration isolation of the cab suspension. Vibration models of cab suspension and complete vehicle were built through multi-body dynamics software ADAMS. Finite element and multi-body dynamics were collaborated into the analysis of the transfer characteristics, the response and the isolation feature of cab suspension based on the complete vehicle. To improve the vibration performance of the cab suspension, improvements and optimization design were proposed with genetic algorithm method. The analysis results show that there only limited effectiveness on coil spring. So the improvement plans were proposed to replace the coil spring with an air spring and setting transverse damper. According to the plans, the original cab suspension was modified. The piecewise function method was used in fitting the characteristic of the air spring.
Technical Paper

Vibration Control of MR-Damped Half Truck Suspension System Using Proportional Integral Derivative Controller Tuned by Ant Colony Optimization

2024-04-09
2024-01-2289
Proportional integral derivative (PID) control technique is a famous and cost-effective control strategy, in real implementation, applied in various engineering applications. Also, the ant colony optimization (ACO) algorithm is extensively applied in various industrial problems. This paper addresses the usage of the ACO algorithm to tune the PID controller gains for a semi-active heavy vehicle suspension system integrated with cabin and seat. The magnetorheological (MR) damper is used in main suspension as a semi-active device to enhance the ride comfort and vehicle stability. The proposed semi-active suspension consists of a system controller that calculate the desired damping force using a PID controller tuned using ACO, and a continuous state damper controller that predict the input voltage that is required to track the desired damping force.
Technical Paper

Vehicle Model Robustness: A Case Study of the FMTV Military Truck Model

2005-04-11
2005-01-0930
Vital to the effectiveness of simulation-based design is having a model of known quality of the system being designed. The purpose of this paper is to validate a simplified dynamic model of an FMTV (Family of Medium Tactical Vehicles) for a range of system parameters using a previously developed technique for determining model robustness and accuracy within a design space. The literature provides an algorithm called AVASIM (Accuracy and Validity Algorithm for Simulation) for assessing model validity systematically and quantitatively. AVASIM assess the validity of a model based on a specific input and set of system parameters. The literature also defines a procedure for evaluating the robustness and accuracy of a model with respect to input and system parameter variations based on the AVASIM algorithm.
Technical Paper

Vehicle Mission Simulation, 1970

1970-02-01
700567
Vehicle mission simulation is one component of a system designed to optimize selection and operation of on-highway vehicles. The focus of vehicle mission simulation is on equipment specification. It can predict the physical and financial performance of equipment alternatives, identify opportunities and correct problems before a truck is purchased.
Technical Paper

Vehicle Dynamics: A New Way of Understanding and Optimizing Vehicle Performance

2013-10-07
2013-36-0335
Evaluation of vehicle performance is one of the most important phases of the new vehicle development. Start Ability and Top Speed are factors that are noticed by users, therefore are very important to the final product. Vehicle performance evaluation has been largely benefited from the use of simulation tools. In fact, MAN Latin America (ML) employs simulation programs to evaluate the performance of its vehicles (trucks and buses) achieving good results. However, those programs are normally “closed codes” which makes difficult the physical comprehension of results. Altogether, this article presents Vehicle Dynamics, a macro developed by ML engineering team. The aim of this macro is the automatic calculation of Start Ability, Grade Ability, Top Speed, among other performance parameters.
Technical Paper

Vehicle Dynamics Simulation for Handling Optimization of Heavy Trucks

2000-12-04
2000-01-3437
The purpose of this paper is to show how vehicle dynamics simulation can be utilized in the design and optimization of heavy trucks, with the example of the Freightliner/Rosenbauer Panther FL airport rescue vehicle. By using dynamic simulation in the design process for the Panther FL, enhancements in vehicle handling and safety were made before the first vehicle was built. Once a prototype was completed, a full testing program was run to verify the accuracy of the simulation, and to see if the design goals had been achieved. This paper will trace the development of the Panther FL from concept and initial modeling, to design optimization and final model validation.
Technical Paper

Using a Statistical Machine Learning Tool for Diesel Engine Air Path Calibration

2014-09-30
2014-01-2391
A full calibration exercise of a diesel engine air path can take months to complete (depending on the number of variables). Model-based calibration approach can speed up the calibration process significantly. This paper discusses the overall calibration process of the air-path of the Cat® C7.1 engine using statistical machine learning tool. The standard Cat® C7.1 engine's twin-stage turbocharger was replaced by a VTG (Variable Turbine Geometry) as part of an evaluation of a novel air system. The changes made to the air-path system required a recalculation of the air path's boost set point and desired EGR set point maps. Statistical learning processes provided a firm basis to model and optimize the air path set point maps and allowed a healthy balance to be struck between the resources required for the exercise and the resulting data quality.
Technical Paper

Using Pro/ENGINEER and ANSYS in Undergraduate Engineering Education

1994-09-01
941748
The authors relate their experience in teaching a senior level Computer-Aided Design (CAD) course in Mechanical Engineering using advanced Computer-Aided Engineering software. The course balances the theory and the need for hands-on experience with commercial CAD software in solving practical design problems. Students are given assignments ranging from simple 3D modeling exercises and 2D finite element analyses to an optimization project requiring more advanced 3D modeling and analysis. Where possible, analytical solutions are found and compared to the finite element results. The software allows the students to explore much more complex problems than would have otherwise been possible.
X