Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Wear Study of Coated Heavy Duty Exhaust Valve Systems in a Experimental Test Rig

2012-04-16
2012-01-0546
The exhaust valve system of combustion engines experiences a very complex contact situation of frequent impact involving micro sliding, high and varying temperatures, complex exhaust gas chemistry and possible particulates. The wear rate has to be extremely low, and the individual wearing events operate at a scale that is very demanding to detect. The tribological conditions in the exhaust valve system are expected to become even worse for engines that will follow the future emission regulations. The regulations demand reduced amounts of soot and particles, sulfur compounds, etc., which today act beneficial for the seating surfaces. The reductions are expected to increase the metal-to-metal contact.
Technical Paper

Wear Generation in Hydraulic Pumps

1990-09-01
901679
This paper is concerned with the synergistic effects of pump wear modes. The objective is to investigate the wear produced by cavitation, adhesion, abrasion, and corrosion and to verify a proposed model of the synergistic pump wear process. The approach followed includes identification of the combined effects of different wear modes (synergisms) in a pump and the development of a synergistic wear model that includes pump operating and environmental conditions as trigger factors of wear modes. An experimental program was designed to evaluate the cavitation, adhesion, and corrosion wear effects in conjunction with the abrasive wear produced in a pump by measuring wear debris, particle size and gravimetric levels of fluid. The generation of wear was traced to different pump locations. The results obtained here suggest that improved pump design and longer pump service life can be obtained when synergisms between failure modes are properly understood.
Technical Paper

Validation of a Newly Developed Quasi-Dimensional Combustion Model - Application on a Heavy Duty DI Diesel Engine

2004-03-08
2004-01-0923
This work is a part of an extended investigation conducted by the authors to validate and improve a newly developed quasi-dimensional combustion model. The model has been initially applied on an old technology, naturally aspirated HSDI Diesel engine and the results were satisfying as far as performance and pollutant emissions (Soot and NO) are concerned. But since obviously further and more extended validation is required, in the present study the model is applied on a new technology, heavy-duty turbocharged DI Diesel engine equipped with a high pressure PLN fuel injection system. The main feature of the model is that it describes the air-fuel mixing mechanism in a more fundamental way compared to existing multi-zone phenomenological combustion models, while being less time consuming and complicated compared to the more accurate CFD models. The finite volume method is used to solve the conservation equations of mass, energy and species concentration.
Technical Paper

VERT - Clean Diesel Engines for Tunnel Construction

1997-02-24
970478
Diesel engines are irreplaceable in tunnel construction. The particulate emissions of present day engines are so high that the imission limits valid since 1991 cannot be attained by ventilation alone. This problem had to be solved preparatory to the large tunnel projects in Switzerland, Austria and Germany. Several retro-fitting measures were investigated both in the laboratory and in field tests, within the scope of the Project VERT. Oxidation catalytic converters, exhaust gas recirculation, and the usage of special fuels cannot be recommended. Particulate trap deployment, in different systems, was mostly successful. Particular attention was focused on the dependable filtration of finest particulates < 200 nm. The VERT proved that exhaust gas after-treatment with particulate traps is feasible, cost effective and controllable in the field. Pertinent directives are in discussion.
Technical Paper

Urea-SCR System Demonstration and Evaluation for Heavy-Duty Diesel Trucks

1999-11-15
1999-01-3722
The Institute of Transportation Studies at the University of California, Davis (ITS-Davis) has brought together a group of public and industrial partners to demonstrate and evaluate the Siemens-Westinghouse Urea-Selective Catalyst Reduction System (SINOx™). The SINOx System has the potential to generate major reductions in nitrogen oxides (NOx) and the volatile organic fraction (VOF) of particulate (PM) from heavy-duty diesel engines, without increasing fuel consumption and carbon dioxide (CO2) emissions. This demonstration began with engine bench testing at Detroit Diesel Corporation to calibrate the system to attain 1 g/bhp-hr NOx emissions in the transient portion of the US-FTP on a 1999 Series 60 engine that has a 4 g/bhp-hr emission level. The second phase of the project entails an on-highway demonstration of a set of ten, Freightliner Class 8 heavy-duty diesel vehicles. These vehicles are part of the Valley Material Transport fleet based in French Camp, California.
Technical Paper

Urban Driving Cycle Results of Retrofitted Diesel Oxidation Catalysts on Heavy Duty Vehicles: One Year Later

1997-02-24
970186
This updated paper presents chassis dynamometer emissions testing of various heavy duty vehicles with and without retrofitted diesel oxidation catalyst technology. Analysis is provided into both the vehicle emissions baselines and emissions with retrofitted catalyst technology over the New York Composite and Central Business District cycles. The vehicles studied include four urban buses, two school buses and four heavy duty trucks. Some of these vehicles in this study have been followed for up to two years. The paper will discuss in-use heavy duty vehicle emissions issues and the use of diesel oxidation catalyst technologies.
Technical Paper

Urban Driving Cycle Results of Retrofitted Diesel Oxidation Catalysts on Heavy Duty Vehicles

1996-02-01
960134
This paper presents the emissions testing results of various heavy duty engines and vehicles with and without retrofitted diesel oxidation catalyst technology. 1987 Cummins L10 and 1991 DDC 6V92TA DDECII engine results over the U.S. Heavy Duty Transient Test are presented for comparison to chassis test results. The vehicles in this study include two urban buses, two school buses and three heavy duty trucks. The Central Business District, New York Bus and New York Composite urban driving cycles have been used to evaluate baseline emissions and the catalyst performance on a heavy duty chassis dynamometer. The results demonstrate that 25-45% particulate reduction is readily achievable on a wide variety of heavy duty vehicles. Significant carbon monoxide and hydrocarbon reductions were also observed.
Technical Paper

Unregulated Emissions Characterization and Comparison for Two Off-Road Applications: A DPF and Non-DPF Engine

2022-03-29
2022-01-0587
As governmental agencies focus on low levels of the oxides of nitrogen (NOx) emissions compliance, new off-road applications are being reviewed for both regulated and unregulated emissions to understand the technological challenges and requirements for improved emissions performance. The California Air Resources Board (CARB) has declared its intention to pursue more stringent NOX standards for the off-road market. As part of this effort, CARB initiated a program to provide a detailed characterization of emissions meeting the current Tier 4 off-road standards [1]. This work focused on understanding the off-road market, establishing a current technology emissions baseline, and performing initial modeling on potential low NOx solutions. This paper discusses a part of this effort, focuses on the emissions characterization from two non-road engine platforms, and compares the emissions species from different approaches designed to meet Tier 4 emissions regulations.
Technical Paper

Uncertainties in Measurements of Emissions in Chassis Dynamometer Tests

2014-04-01
2014-01-1584
This paper illustrates a method to determine the experimental uncertainties in the measurement of tailpipe emissions of carbon dioxide, carbon monoxide, nitrogen oxides, hydrocarbons, and particulates of medium-, and heavy-duty vehicles when tested on a heavy-duty chassis dynamometer and full-scale dilution tunnel. Tests are performed for different chassis dynamometer driving cycles intended to simulate a wide range of operating conditions. Vehicle exhaust is diluted in the dilution tunnel by mixing with conditioned air. Samples are drawn through probes for raw exhaust, diluted exhaust and particulates and measured using laboratory grade emission analyzers and a microbalance. At the end of a driving cycle, results are reported for the above emissions in grams/mile for raw continuous, dilute continuous, dilute bag, and particulate measurements.
Technical Paper

Ultracapacitor Transit Bus - Urban Electric Mobility into an Opportunity Charging Concept

2016-10-25
2016-36-0176
Environmental concerns and limited fossil fuels reserves have fostered an increased interest in alternative propulsion systems. In this scenario, electric traction, with its inherent zero local emissions, high efficiency and improved operational performance (acceleration and hill climbing potential), emerges as a desired option for public transport systems. Transit buses, the prevailing transport system in cities, and, hence, strong contributors to traffic environmental impact on urban areas, can reduce considerably their environment burden with the use of electric traction. This means less local pollutants, specially particulate matter - PM and nitrogen oxides - NOx, currently the “Achilles heel” of diesel engines, as well as CO2 greenhouse emissions - GHG.
Technical Paper

Two-Color Combustion Visualization of Single and Split Injections in a Single-Cylinder Heavy-Duty D.I. Diesel Engine Using an Endoscope-Based Imaging System

1999-03-01
1999-01-1112
An experimental study of luminous combustion in a modern diesel engine was performed to investigate the effect of injection parameters on NOX and soot formation via flame temperature and soot KL factor measurements. The two-color technique was applied to 2-D soot luminosity images and area-averaged soot radiation signals to obtain spatially and temporally resolved flame temperature and soot KL factor. The imaging system used for this study was based on a wide-angle endoscope that was mounted in the cylinder head and allowed different views of the combustion chamber. The experiments were carried out on a single-cylinder 2.4 liter D.I. diesel engine equipped with an electronically controlled common-rail injection system. Operating conditions were 1600 rpm and 75% load. The two-color results confirm that retarding the injection timing causes lower flame temperatures and NOX emissions but increased soot formation, independent of injection strategy.
Technical Paper

Tribological Performance of Lubricating Oil Contaminated with Fine Dust Particles

2014-09-30
2014-01-2334
The economics of operating internal combustion engines in cars, buses and other automotive equipment is heavily affected by friction and wear losses caused by abrasive contaminants. As such, dust is a universal pollutant of lubricating oils. Road dust consists of depositions from vehicular and industrial exhausts, tire and brake wear, dust from paved roads or potholes, and from construction sites. Present research investigates the influence of dust powder of size 5 μm-100 μm as contaminant in SAE 20W-40 lubricant on the relative motion of a plane surface over the other having circular surface in contact. A pin-on-disk setup as per ASTM G99 has been used to conduct the experiments, firstly at increasing rpm keeping constant load of 118 N, and secondly by increasing loads, keeping rpm constant at 1000. The contaminated lubricant has been used to study its influence on friction and wear rate at the interface of pin of 12 mm diameter and disk at track diameter of 98 mm.
Technical Paper

Transient Ultrafine Particle Emission Measurements with a New Fast Particle Aerosol Sizer for a Trap Equipped Diesel Truck

2005-10-24
2005-01-3800
The California Air Resources Board (CARB) has tested the utility of the Model 3090 Engine Exhaust Particle Sizer (EEPS™) by TSI in measuring pre- and post-trap particulate matter (PM) emissions from a medium-duty truck. Pre- and post-trap measurements are used to evaluate the effect of engine operation on PM emissions and trap effectiveness. Because of mounting evidence that ultrafine (UF) particles are harmful, regulatory agencies are investigating new and promising instrumentation for improved characterization of such particles in emissions. This is especially true for fast-response instruments that can be used to size-resolve real-time UF emissions from prominent sources such as diesel engines. The EEPS uses diffusion charging, electrical mobility segregation, and electrometers. It is designed for the number measurement of transient aerosols in the size range of 5.6 to 560 nm. It collects 10 measurements per second at a flow rate of 10 lpm.
Technical Paper

Transient Particulate Emissions from Diesel Buses During the Central Business District Cycle

1996-02-01
960251
Particulate emissions from heavy-duty buses were measured in real time under conditions encountered during the standard Central Business District (CBD) driving cycle. The buses tested were equipped with 1994 Detroit Diesel Engine Corporation 6V92-TA engines, and some included after treatment devices on the exhaust. Instantaneous, time-resolved measurements of CO2 and amorphous carbon concentrations were obtained using an optical extinction technique and compared to simultaneous results obtained using conventional dilution tunnel sampling methods. Good agreement was obtained between the real-time extinction measurements and the diluted CO2 and cycle-integrated filter measurements. The instantaneous measurements revealed that acceleration transients accounted for roughly 80% of the particulate mass emitted during the cycle but only about 45% of the fuel consumption.
Journal Article

Transient On-Road Emission Reduction of an LNT + SCR Aftertreatment System

2008-10-07
2008-01-2641
An LNT + SCR diesel aftertreatment system was developed in order to meet the 2010 US HD EPA on-road, and tier 4 US HD EPA off-road emission standards. This system consists of a fuel reformer (REF), lean NOx trap (LNT), catalyzed diesel particulate filter (DPF), and selective catalytic reduction (SCR) catalyst arranged in series to reduce tailpipe nitrogen oxides (NOx) and particulate matter (PM). This system utilizes a REF to produce hydrogen (H2), carbon monoxide (CO) and heat to regenerate the LNT, desulfate the LNT, and actively regenerate the DPF. The NOx stored on the LNT is reduced by the H2 and CO generated in the REF converting it to nitrogen (N2) and ammonia (NH3). NH3, which is normally an undesired byproduct of LNT regeneration, is stored in the downstream SCR which is utilized to further reduce NOx that passes through the LNT. Engine exhaust PM is filtered and trapped by the DPF reducing the tailpipe PM emissions.
Technical Paper

Transient Behavior of VOCs Emission and Particle Size Distribution during Active Regeneration of Diesel Particulate Filter Equipped Diesel Engine

2011-08-30
2011-01-2087
In order to reduce fine particle emission, a diesel particulate filter (DPF) has begun to be equipped to a diesel engine. During regeneration of DPF, nanoparticles are known to be formed downstream of DPF. VOCs emission during regeneration is of interest in view of toxicity and formation mechanism of nanoparticles. A heavy duty diesel engine equipped with DPF was investigated to measure particle and VOCs emissions using PTR-TOFMS (Proton Transfer Reaction - Time of Flight Mass Spectrometer). PTR-TOFMS is a new on-line mass spectrometer using chemical ionization and its application to engine exhaust measurements is new. During active regeneration of the DPF, fine particle emission was increased by nucleation. But VOCs as well as THC emissions increased prior to particle increase. After the regeneration the particle and VOCs emissions decreased immediately to the level of normal operation.
Technical Paper

Trade-Offs Between Emissions and Efficiency for Multiple Injections of Neat Biodiesel in a Turbocharged Diesel Engine Using an Enhanced PSO-GA Optimization Strategy

2016-04-05
2016-01-0630
Particle Swarm and the Genetic Algorithm were coupled to optimize multiple performance metrics for the combustion of neat biodiesel in a turbocharged, four cylinder, John Deere engine operating under constant partial load. The enhanced algorithm was used with five inputs including EGR, injection pressure, and the timing/distribution of fuel between a pilot and main injection. A merit function was defined and used to minimize five output parameters including CO, NOx, PM, HC and fuel consumption simultaneously. The combination of PSO and GA yielded convergence to a Pareto regime without the need for excessive engine runs. Results along the Pareto front illustrate the tradeoff between NOx and particulate matter seen in the literature.
Journal Article

Tier 4 High Efficiency SCR for Agricultural Applications

2012-04-16
2012-01-1087
This paper describes the evolution in diesel engine SCR technology used on tractors ≻130 kW. Details on the SCR technology evolution from Tier 3 to Tier 4 interim are disclosed. Furthermore, this paper demonstrates how state-of-the-art SCR technology can make a non-EGR diesel engine meet Tier 4 final emission limits without using particulate filtration. Initially, it was assumed that Tier 4 aftertreatment systems would use aftertreatment for NOx and PM, combined with an advanced combustion concept and EGR. However, with this solution, one can expect disadvantages such as: cost, complexity, high heat rejection, large space claim and less than optimal fuel efficiency. Furthermore, active PM filter regeneration is challenging and can be hazardous in certain agricultural applications. A Tier 4 final engine without PM filtration would require a SCR aftertreatment system with NOx conversion efficiencies in the range of 90-97% on all relevant conditions for the entire life of the engine.
Technical Paper

Thermophoretic Transport of Submicron Particles in Pulsating Surface Sublayers

2012-09-24
2012-01-1950
EGR coolers are widely used in reciprocating engines to reduce NOx emission. Thermophoresis-an important transport mechanism for submicron particles such as soot-drives gas-suspended particles from hot regions towards cool surfaces and is responsible for soot deposition and build-up in EGR coolers and related devices. Although much is known about thermophoresis in steady flow, little is known about soot deposition in flows with oscillatory heat and mass transfer. In this paper we present new results for the model problem of thermophoretic particle transport in a thin pulsatile shear layer above a flat, cold wall. The transport equations for this sublayer flow with oscillating shear have been solved numerically and, in the case of steady flow, are in excellent agreement with the exact solution for the steady wall shear.
X