Refine Your Search

Topic

Search Results

Technical Paper

X-Ray Measurements of High Pressure Diesel Sprays

2001-03-05
2001-01-0531
A quantitative and time-resolved technique has been developed to probe the fuel distribution very near the nozzle of a high-pressure diesel injector. This technique uses the absorption of synchrotron x-rays to measure the fuel mass with good time and position resolution. The penetrating power of x-rays allows measurements that are difficult with other techniques, such as quantitative measurements of the mass and penetration measurements of the trailing edge of the spray. Line-of-sight measurements were used to determine the fuel density as a function of time. The high time resolution and quantitative nature of the measurement also permit an accurate measure of the instantaneous mass flow rate through the nozzle.
Technical Paper

Visualization of Direct-Injection Gasoline Spray and Wall-impingement Inside a Motoring Engine

1998-10-19
982702
Two-dimensional pulse-laser Mie scattering visualization of the direct-injection gasoline fuel sprays and wall impingement processes was carried out inside a single-cylinder optically accessible engine under motoring condition. The injectors have been first characterized inside a pressurized chamber using identical technique, as well as high-speed microscopic visualization and phase Doppler measurement techniques. The effects of injector cone angle, location, and injection timings on the wall impingement processes were investigated. It was found that the fuel vaporization is not complete at the constant engine speed tested. Fuel spray droplets were observed to disperse wider in the motored engine when compared with an isothermal quiescent ambient conditions. The extent of wall-impingement varies significantly with the injector mounting position and spray cone angle; however, its effect can be reduced to some extent by optimizing the injection timing.
Technical Paper

Ultrafast X-Ray Phase-Enhanced Microimaging for Visualizing Fuel Injection Process

2005-09-11
2005-24-093
Propagation-based and phase-enhanced x-ray imaging was developed as a unique metrology technique to visualize the internal structure of high-pressure fuel injection nozzles. We have visualized the microstructures inside 200-μm fuel injection nozzles in a 3-mm-thick steel housing using this novel technique. Furthermore, this new x-ray-based metrology technique has been used to directly study the highly transient needle motion in the nozzles in situ and in real-time, which is virtually impossible by any other means. The needle motion has been shown to have the most direct effect on the fuel jet structure and spray formation immediately outside of the nozzle. In addition, the spray cone-angle has been perfectly correlated with the numerically simulated fuel flow inside the nozzle due to the transient nature of the needle during the injection.
Technical Paper

Time-Resolved Measurements in Transient Port Injector Sprays

1995-02-01
950509
A global characterization of the spray distribution of various current and development types of automotive fuel injectors was obtained. Axial and radial measurement of droplet sizes, velocities and volume fluxes were made with a phase Doppler particle analyzer (PDPA) for a transient port injector spray in quiescent atmospheric conditions. Time-resolved measurements involving the time-of-arrival of each droplet associated with its size and velocity components were also acquired. Additionally, the liquid sprays emanating from various types of port fuel injectors were visualized, through planar laser induced fluorescence (PLIF) technique, at different time instants. Such detailed study provides an improved understanding of the temporal or unsteady behavior of port injector spray.
Technical Paper

The Spray Characteristics of Dual-Stream Port Fuel Injectors for Applications to 4-Valve Gasoline Engines

1995-10-01
952487
An experimental study of sprayod structures from a regular dual-stream (RDS) injector and an air-shrouding dual-stream (ASDS) injector was carried out extensively to understand the spray characteristics of dual-stream (DS) port fuel injector for applications to 4-valve gasoline engines. The injectors were tested under steady and transient conditions at different injection pressures. The global spray structures were visualized using planar laser Mie scattering (PLMS) technique and spray atomization processes were quantified using phase Doppler anemometry (PDA) technique. The experimental results showed that at the beginning of fuel injection, the spray tip penetration for the RDS injector decreases with an increase in injection pressure; however, at the later stage of fuel injection, it increases when the injection pressure is increased. It is also found that the ligaments are dominant near the injector tip for the RDS injector with threads connecting the two streams.
Technical Paper

The Spray Characteristics of Automotive Port Fuel Injection-A Critical Reviews

1995-02-01
950506
The requirement of meeting the emission standards for low emission vehicles (LEV) and ultra low emission vehicles (ULEV) has resulted in a more stringent examination of all elements of the automotive internal combustion engine that contribute to emission formation. The fuel system, as one of the key elements, is the subject of renewed and expanded research in an effort to understand and optimize the important parameters. Only through such enhanced understanding of the basic processes of fuel injection, metering, atomization, targeting, pulse-to-pulse variability and induction of fuel under cold, normal and elevated temperature conditions can the very low emissions of today's vehicles be further reduced to ULEV values.
Technical Paper

The Effect of Fuel-Line Pressure Perturbation on the Spray Atomization Characteristics of Automotive Port Fuel Injectors

1995-10-01
952486
An experimental study was carried out to characterize the spray atomization process of automotive port fuel injectors retrofitted to a novel pressure modulation piezoelectric driver, which generates a pressure perturbation inside the fuel line. Unlike many other piezoelectric atomizers, this unit does not drive the nozzle directly. It has a small size and can be installed easily between regular port injector and fuel lines. There is no extra control difficulty with this system since the fuel injection rate and injection timing are controlled by the original fuel-metering valve. The global spray structures were characterized using the planar laser Mie scattering (PLMS) technique and the spray atomization processes were quantified using phase Doppler anemometry (PDA) technique.
Technical Paper

Spray Targeting Inside a Production-Type Intake Port of a 4-Valve Gasoline Engine

1996-02-01
960115
An experimental study was carried out to investigate the spray behavior inside engine intake ports. Production-type intake ports of four-valve gasoline engines were modified for the optical access at directions. The global spray formation process was visualized through laser Mie scattering technique. The spray breakup and atomization processes, spray targeting and fuel dispersing characteristics were investigated as a function of elapse time after fuel injection. The spray interaction with the port wall and port air flow were examined with different types of port fuel injectors including single-stream, multi-stream, and air-shrouded ones. The spray targeting and dispersing characteristics inside two different intake ports were examined. It was found that spray targeting and fuel dispersion inside the intake port are strongly dependent on the spray characteristics, as a result of different injector designs and injector installation positions.
Technical Paper

Spray Dynamics of High Pressure Fuel Injectors for DI Gasoline Engines

1996-10-01
961925
An experimental study was made to investigate the spray characteristics of high pressure fuel injectors for direct-injection gasoline engines. The global spray development process was visualized using two-dimensional laser Mie scattering technique. The spray atomization process was characterized by Phase Doppler particle analyzer. The transient spray development process was investigated under different fuel injection conditions as a function of the time after the fuel injection start. The effects of injector design, fuel injection pressure, injection duration, ambient pressure, and fuel property on the spray breakup and atomization characteristics were studied in details. Two clear counter-rotating recirculation zones are observed at the later stage or after the end of fuel injection inside the fuel sprays with a small momentum. The circumferential distribution of the spray from the large-angle injector is quite irregular and looks like a star with several wings projected out.
Technical Paper

Quantitative Measurements of Direct-Injection Gasoline Fuel Sprays in Near-Nozzle Region Using Synchrotron X-Ray

2001-03-05
2001-01-1293
A quantitative and time-resolved technique has been developed to probe the dense spray structure of direct-injection (DI) gasoline sprays in near-nozzle region. This technique uses the line-of-sight absorption of monochromatic x-rays from a synchrotron source to measure the fuel mass with time resolution better than 1 μs. The small scattering cross-section of fuel at x-rays regime allows direct measurements of spray structure that are difficult with most visible-light optical techniques. Appropriate models were developed to determine the fuel density as a function of time.
Technical Paper

Numerical Prediction and Validation of Fuel Spray Behavior in a Gasoline Direct-Injection Engine

2001-09-24
2001-01-3668
Analysis of flow field and charge distribution in a gasoline direct-injection (GDI) engine is performed by a modified version of the KIVA code. A particle-based spray model is proposed to simulate a swirl-type hollow-cone spray in a GDI engine. Spray droplets are assumed to be fully atomized and introduced at the sheet breakup locations as determined by experimental correlations and energy conservation. The effects of the fuel injection parameters such as spray cone angle and ambient pressure are examined for different injectors and injection conditions. Results show reasonable agreement with the measurements for penetration, dispersion, global shape, droplet velocity and size distribution by Phase Doppler Particle Anemometry(PDPA) in a constant-volume chamber. The test engine is a 4-stroke 4-valve optically accessible single-cylinder engine with a pent-roof head and tumble ports.
Technical Paper

New Integrated “O.P.E.R.A.S.” Strategies for Low Emissions in HSDI Diesel Engines

2003-03-03
2003-01-0261
Integrated control strategies for the O.P.E.R.A.S. (Optimization of injection Pressure, EGR ratio, injection Retard or Advance and Swirl ratio) are demonstrated. The strategies are based on an investigation of combustion and emissions in a small bore, high speed, direct injection diesel engine. The engine is equipped with a common rail injection system and is tested under simulated turbocharged engine conditions at two loads and speeds that represent two key operating points in a medium size HEV vehicle. A new phenomenological model is developed for the fuel distribution in the combustion chamber and the fractions that are injected prior to the development of the flame, injected in the flame or deposited on the walls. The investigation covered the effect of the different operating parameters on the fuel distribution, combustion and engine-out emissions.
Technical Paper

Near-Nozzle Structure of Diesel Sprays Affected by Internal Geometry of Injector Nozzle: Visualized by Single-Shot X-ray Imaging

2010-04-12
2010-01-0877
By taking advantage of high-intensity and high-brilliance x-ray beams available at the Advanced Photon Source (APS), ultrafast (150 ps) propagation-based phase-enhanced imaging was developed to visualize high-pressure high-speed diesel sprays in the optically dense near-nozzle region. The sub-ns temporal and μm spatial resolution allows us to capture the morphology of the high-speed fuel sprays traveling at 500 m/s with a negligible motion blur. Both quality and quantitative information about the spray feature can be readily obtained. In the experiment, two types of single-hole nozzles have been used, one with a hydroground orifice inlet and the other with a sharp one. Within 3 mm from the nozzle, the sprays from these nozzles behave differently, ranging from laminar flow with surface instability waves to turbulent flow. The sprays are correlated with the nozzle internal geometry, which provides practical information for both nozzle design and supporting numerical simulation models.
Technical Paper

Investigation of Diesel Spray Primary Break-up and Development for Different Nozzle Geometries

2002-10-21
2002-01-2775
The nozzle configuration for an injector is known to have an important effect on the fuel atomization. A comprehensive experimental and numerical investigation has been performed to determine the influence of various internal geometries on the primary spray breakup and development using the electronically controlled high-pressure diesel injection systems. Different types of multi-hole minisac and VCO nozzles with cylindrical and tapered geometries, and different types of single-hole nozzles with defined grades of Hydro Grinding (HG) were investigated. The global characteristics of the spray, including spray angle, spray tip penetration and spray pattern were measured from the spray images with a high-speed drum camera. A long-distance microscope with a pulsed-laser as the optical shutter was used to magnify the diesel spray at the nozzle hole vicinity. A CFD analysis of the internal flow through various nozzle geometries has been carried out with a commercial code.
Technical Paper

Implications of 3-D Internal Flow Simulation on the Design of Inward-Opening Pressure-Swirl Injectors

2002-10-21
2002-01-2698
A parametric study on the effects of critical injector design parameters of inwardly-opening pressure-swirl injectors was carried out using 3-D internal flow simulations. The pressure variation and the integrated momentum flux across the injector, as well as the flow distributions and turbulence structure at the nozzle exit were analyzed. The critical flow effects on the injector design identified are the swirler efficiency, discharge coefficient, and turbulence breakup effects on the spray structure. The study shows that as a unique class of injectors, pressure-swirl injectors is complicated in fluid mechanics and not sufficiently characterized or optimized. The swirler efficiency is characterized in terms of the trade-off relationship between the swirl-to-axial momentum-flux ratio and pressure drop across the swirler. The results show that swirl number is inversely proportional to discharge coefficient, and that hole diameter and swirler height is the most dominant parameters.
Journal Article

Gasoline Fuel Injector Spray Measurement and Characterization - A New SAE J2715 Recommended Practice

2008-04-14
2008-01-1068
With increasingly stringent emissions regulations and concurrent requirements for enhanced engine thermal efficiency, a comprehensive characterization of the automotive gasoline fuel spray has become essential. The acquisition of accurate and repeatable spray data is even more critical when a combustion strategy such as gasoline direct injection is to be utilized. Without industry-wide standardization of testing procedures, large variablilities have been experienced in attempts to verify the claimed spray performance values for the Sauter mean diameter, Dv90, tip penetration and cone angle of many types of fuel sprays. A new SAE Recommended Practice document, J2715, has been developed by the SAE Gasoline Fuel Injection Standards Committee (GFISC) and is now available for the measurement and characterization of the fuel sprays from both gasoline direct injection and port fuel injection injectors.
Technical Paper

GDi Nozzle Parameter Studies Using LES and Spray Imaging Methods

2014-04-01
2014-01-1434
Development of in-cylinder spray targeting, plume penetration and atomization of the gasoline direct-injection (GDi) multi-hole injector is a critical component of combustion developments, especially in the context of the engine downsizing and turbo-charging trend that has been adopted in order to achieve the European target CO2, US CAFE, and concomitant stringent emissions standards. Significant R&D efforts are directed towards the optimization of injector nozzle designs in order to improve spray characteristics. Development of accurate predictive models is desired to understand the impact of nozzle design parameters as well as the underlying physical fluid dynamic mechanisms resulting in the injector spray characteristics. This publication reports Large Eddy Simulation (LES) analyses of GDi single-hole skew-angled nozzles, with β=30° skew (bend) angle and different nozzle geometries.
Technical Paper

Effects of Injection Timings and Intake Port Flow Control on the In-Cylinder Wetted Fuel Footprints during PFI Engine Startup Process

2005-05-11
2005-01-2082
Wall-wetting due to liquid fuel film motion and fuel droplet impingement on combustion chamber walls is a major source of unburned hydrocarbons (UBHC), and is a concern for oil dilution in PFI engines. An experimental study was carried out to investigate the effects of injection timing, a charge motion control device, and the matching of injector with port geometry, on the “footprints” of liquid fuel inside the combustion chamber during the PFI engine starting process. Using a gasoline-soluble dye and filter paper deployed on the cylinder liner and piston top land surfaces to capture the liquid fuel footprints, the effects of the mixture formation processes on the wetted footprints can be qualitatively and quantitatively examined by comparing the wetted footprint locations and their color intensities. Real-time filming of the development of wetted footprints using a high-speed camera can also show the time history of the fuel wetting process inside an optically accessible engine.
Technical Paper

Effect of Nozzle hole Geometry on a HSDI Diesel Engine-Out Emissions

2003-03-03
2003-01-0704
The combustion and emission characteristics of a high speed, small-bore, direct injection, single cylinder, diesel engine are investigated using two different nozzles, a 430-VCO (0.171mm) and a 320 Mini sac (0.131mm). The experiments were conducted at conditions that represent a key point in the operation of a diesel engine in an electric hybrid vehicle (1500 rpm and light load condition). The experiments covered fuel injection pressures ranging from 400 to 1000 bar and EGR ratios ranging from 0 to 50%. The effects of nozzle hole geometry on the ignition delay (ID), apparent rate of energy release (ARER, ARHR), NOx, Bosch smoke unit (BSU), CO and hydrocarbons are investigated.
Technical Paper

Effect of Cycle-to-Cycle Variation in the Injection Pressure in a Common Rail Diesel Injection System on Engine Performance

2003-03-03
2003-01-0699
The performance of the Common Rail diesel injection system (CRS) is investigated experimentally in a single cylinder engine and a test rig to determine the cycle-to-cycle variation in the injection pressure and its effects on the needle opening and rate of fuel delivery. The engine used is a single cylinder, simulated-turbocharged diesel engine. Data for the different injection and performance parameters are collected under steady state conditions for 35 consecutive cycles. Furthermore, a mathematical model has been developed to calculate the instantaneous fuel delivery rate at various injection pressures. The experimental results supported with the model computations indicated the presence of cycle-to-cycle variations in the fuel injection pressure and needle lift. The variations in the peak-cylinder gas pressure, rate of heat release, cylinder gas temperature and IMEP are correlated with the variation in the injection rate.
X