Refine Your Search

Topic

Author

Search Results

Technical Paper

Thoracic Response of Belted PMHS, the Hybrid III, and the THOR-NT Mid-Sized Male Surrogates in Low-Speed, Frontal Crashes

2006-11-06
2006-22-0009
Injury to the thorax is the predominant cause of fatalities in crash-involved automobile occupants over the age of 65, and many elderly-occupant automobile fatalities occur in crashes below compliance or consumer information test speeds. As the average age of the automotive population increases, thoracic injury prevention in lower severity crashes will play an increasingly important role in automobile safety. This study presents the results of a series of sled tests to investigate the thoracic deformation, kinematic, and injury responses of belted post-mortem human surrogates (PMHS, average age 44 years) and frontal anthropomorphic test devices (ATDs) in low-speed frontal crashes. Nine 29 km/h (three PMHS, three Hybrid III 50th% male ATD, three THOR-NT ATD) and three 38 km/h (one PMHS, two Hybrid III) frontal sled tests were performed to simulate an occupant seated in the right front passenger seat of a mid-sized sedan restrained with a standard (not force-limited) 3-point seatbelt.
Technical Paper

The Effect of Door Topography on Abdominal Injury in Lateral Impact

1989-10-01
892433
Seventeen left lateral impact experiments were performed using anesthetized swine to determine the biomechanics of injury production in this impact mode. Two series of eight animals were used and one animal served as a control. In the first series of experiments, rigid thoracic and pelvic loading surfaces were separated by an “interplate gap” of 20.3 cm (8”). In the second series of experiments, the interplate gap was filled by a rigid plate mounted flush with the thoracic and pelvic loading surfaces. Impact velocities ranged from 7.2 to 15.0 m/s (about 15 to 30 mph). Injury patterns for the liver, spleen, and rib cage were significantly different in the two series of experiments (level of significance > 90%). The causative factor responsible for the different injury outcomes was the interplate gap. The conclusion of this report is that loading-surface discontinuities can cause significant injury.
Technical Paper

Side Impact Assessment and Comparison of Appropriate Size and Age Equivalent Porcine Surrogates to Scaled Human Side Impact Response Biofidelity Corridors

2018-11-12
2018-22-0009
Analysis and validation of current scaling relationships and existing response corridors using animal surrogate test data is valuable, and may lead to the development of new or improved scaling relationships. For this reason, lateral pendulum impact testing of appropriate size cadaveric porcine surrogates of human 3-year-old, 6-year-old, 10-year-old, and 50th percentile male age equivalence, were performed at the thorax and abdomen body regions to compare swine test data to already established human lateral impact response corridors scaled from the 50th percentile human adult male to the pediatric level to establish viability of current scaling laws. Appropriate Porcine Surrogate Equivalents PSE for the human 3-year-old, 6-year-old, 10-year-old, and 50th percentile male, based on whole body mass, were established. A series of lateral impact thorax and abdomen pendulum testing was performed based on previously established scaled lateral impact assessment test protocols.
Technical Paper

SID-IIs Beta+-Prototype Dummy Biomechanical Responses

1998-11-02
983151
This paper presents the results of biomechanical testing of the SID-IIs beta+-prototype dummy by the Occupant Safety Research Partnership. The purpose of this testing was to evaluate the dummy against its previously established biomechanical response corridors for its critical body regions. The response corridors were scaled from the 50th percentile adult male corridors defined in International Standards Organization Technical Report 9790 to corridors for a 5th percentile adult female, using established International Standards Organization procedures. Tests were performed for the head, neck, shoulder, thorax, abdomen and pelvis regions of the dummy. Testing included drop tests, pendulum impacts and sled tests. The biofidelity of the SID-IIs beta+-prototype was calculated using a weighted biomechanical test response procedure developed by the International Standards Organization.
Technical Paper

Response Ratio Development for Lateral Pendulum Impact with Porcine Thorax and Abdomen Surrogate Equivalents

2020-03-31
2019-22-0007
There has been recent progress over the past 10 years in research comparing 6-year-old thoracic and abdominal response of pediatric volunteers, pediatric post mortem human subjects (PMHS), animal surrogates, and 6-year-old ATDs. Although progress has been made to guide scaling laws of adult to pediatric thorax and abdomen data for use in ATD design and development of finite element models, further effort is needed, particularly with respect to lateral impacts. The objective of the current study was to use the impact response data of age equivalent swine from Yaek et al. (2018) to assess the validity of scaling laws used to develop lateral impact response corridors from adult porcine surrogate equivalents (PSE) to the 3-year-old, 6-year-old, and 10-year-old for the thorax and abdominal body regions.
Technical Paper

Prediction of Airbag-Induced Forearm Fractures and Airbag Aggressivity

2001-11-01
2001-22-0024
This study continued the biomechanical investigations of forearm fractures caused by direct loading of steering-wheel airbags during the early stages of deployment. Twenty-four static deployments of driver airbags were conducted into the forearms of unembalmed whole cadavers using a range of airbags, including airbags that are depowered as allowed by the new federal requirements for frontal impact testing. In general, the depowered airbags showed a reduction in incidence and severity of forearm fractures compared to the pre-depowered airbags tested. Data from these twenty-four tests were combined with results from previous studies to develop a refined empirical model for fracture occurrence based on Average Distal Forearm Speed (ADFS), and a revised value for fifty-percent probability of forearm-bone fracture of 10.5 m/s. Bone mineral content, which is directly related to forearm tolerance, was found to be linearly related to arm mass.
Technical Paper

Mechanical Properties of the Shoulder Ligaments under Dynamic Loading

2004-11-01
2004-22-0006
Thirty-three fresh human cadaver shoulders were harvested and bone-ligament-bone specimens of acromioclavicular joint, coracoclavicular joint and sternoclavicular joint were obtained. A test fixture and clamps specifically designed for this ligament study and a high-speed Instron machine were used. One quasi-static rate (nominally 0.1 %/sec) and two high rates (nominally, high rate 1 = 40,000 %/sec and high rate 2 = 15,000 %/sec) were used in this study. In the acromioclavicular joint tests, ligament failure was the most common failure mode. Bone fractures occurred most often at the clavicle rather than acromion. In the coracoclavicular joint tests, the majority of specimens failed at the ligament and bone fractures occurred at the coracoid. In the sternoclavicular joint tests, the specimen failed at the bone in most cases. In the acromioclavicular joint and coracoclavicular joint tests, high rate 2 tests and quasi-static tests had more bone fracture cases than high rate 1 tests.
Technical Paper

Lateral Impact-An Analysis of the Statistics in the NCSS

1985-12-01
851727
Data from the National Crash Severity Study (NCSS) has been analyzed with respect to lateral impacts. Accident variables, vehicle variables, and occupant variables, and their interactions have been considered. Emphasis has been placed on occupant variables, especially occupant injury patterns. This report is mainly a compendium of the data, including a comparison of the NCSS statistics with those from France, Germany, and Great Britain. Overall, these lateral impact statistics are quite similar to results of other field accident studies, which is an interesting observation given the diverse vehicle and driver populations and the differing traffic situations experienced by those populations. Conclusions have been drawn regarding typical lateral impact situations and the effectiveness of seatbelts in lateral impacts.
Technical Paper

Investigation into the Noise Associated with Airbag Deployment: Part II - Injury Risk Study Using a Mathematical Model of the Human Ear

1998-11-02
983162
Airbag deployments are associated with loud noise of short duration, called impulse noise. Research performed in the late 1960's and early 1970's established several criteria for assessment of the risk of impulse noise-induced hearing loss for military weapons and general exposures. These criteria were modified for airbag noise in the early 1970's, but field accident statistics and experimental results with human volunteers exposed to airbags do not seem to agree with the criteria. More recent research on impulse noise from weapons firing, in particular that of Price & Kalb of the US Army Research Laboratory, has led to development of a mathematical model of the ear. This model incorporates transfer functions which alter the incident sound pressure through various parts of the ear. It also calculates a function, called the “hazard”, that is a measure of mechanical fatigue of the hair cells in the inner ear.
Technical Paper

Impact Response and Biomechanical Analysis of the Knee-Thigh-Hip Complex in Frontal Impacts with a Full Human Body Finite Element Model

2008-11-03
2008-22-0019
Changes in vehicle safety design technology and the increasing use of seat-belts and airbag restraint systems have gradually changed the relative proportion of lower extremity injuries. These changes in real world injuries have renewed interest and the need of further investigation into occupant injury mechanisms and biomechanical impact responses of the knee-thigh-hip complex during frontal impacts. This study uses a detailed finite element model of the human body to simulate occupant knee impacts experienced in frontal crashes. The human body model includes detailed anatomical features of the head, neck, shoulder, chest, thoracic and lumbar spine, abdomen, pelvis, and lower and upper extremities. The material properties used in the model for each anatomic part of the human body were obtained from test data reported in the literature. The human body model used in the current study has been previously validated in frontal and side impacts.
Technical Paper

Head-Neck Kinematics in Dynamic Forward Flexion

1998-11-02
983156
Two-dimensional film analysis was conducted to study the kinematics of the head and neck of 17 restrained human volunteers in 24 frontal impacts for acceleration levels from 6g to 15g. The trajectory of the head center of gravity relative to upper torso reference points and the rotation of head and neck relative to the lower torso during the forward motion phase were of particular interest. The purpose of the study was to analyze the head-neck kinematics in the mid-sagittal plane for a variety of human volunteer frontal sled tests from different laboratories using a common analysis method for all tests, and to define a common response corridor for the trajectory of the head center-of-gravity from those tests.
Journal Article

Finite-Element-Based Transfer Equations: Post-Mortem Human Subjects versus Hybrid III Test Dummy in Frontal Sled Impact

2015-04-14
2015-01-1489
Transfer or response equations are important as they provide relationships between the responses of different surrogates under matched, or nearly identical loading conditions. In the present study, transfer equations for different body regions were developed via mathematical modeling. Specifically, validated finite element models of the age-dependent Ford human body models (FHBM) and the mid-sized male Hybrid III (HIII50) were used to generate a set of matched cases (i.e., 192 frontal sled impact cases involving different restraints, impact speeds, severities, and FHBM age). For each impact, two restraint systems were evaluated: a standard three-point belt with and without a single-stage inflator airbag. Regression analyses were subsequently performed on the resulting FHBM- and HIII50-based responses. This approach was used to develop transfer equations for seven body regions: the head, neck, chest, pelvis, femur, tibia, and foot.
Journal Article

Finite-Element-Based Transfer Equations: Post-Mortem Human Subjects versus Hybrid III Test Dummy in Blunt Impact

2014-04-01
2014-01-0486
In the present study, transfer equations relating the responses of post-mortem human subjects (PMHS) to the mid-sized male Hybrid III test dummy (HIII50) under matched, or nearly-identical, loading conditions were developed via math modeling. Specifically, validated finite element (FE) models of the Ford Human Body Model (FHBM) and the HIII50 were used to generate sets of matched cases (i.e., 256 frontal impact cases involving different impact speeds, severities, and PMHS age). Regression analyses were subsequently performed on the resulting age-dependent FHBM- and HIII50-based responses. This approach was conducted for five different body regions: head, neck, chest, femur, and tibia. All of the resulting regression equations, correlation coefficients, and response ratios (PHMS relative to HIII50) were consistent with the limited available test-based results.
Technical Paper

ES-2 Dummy Biomechanical Responses

2002-11-11
2002-22-0018
This technical paper presents the results of biomechanical testing conducted on the ES-2 dummy by the Occupant Safety Research Partnership and Transport Canada. The ES-2 is a production dummy, based on the EuroSID-1 dummy, that was modified to further improve testing capabilities as recommended by users of the EuroSID-1 dummy. Biomechanical response data were obtained by completing a series of drop, pendulum, and sled tests that are outlined in the International Organization of Standardization Technical Report 9790 that describes biofidelity requirements for the midsize adult male side impact dummy. A few of the biofidelity tests were conducted on both sides of the dummy to evaluate the symmetry of its responses. Full vehicle crash tests were conducted to verify if the changes in the EuroSID-1, resulting in the ES-2 design, did improve the dummy's testing capability. In addition to the biofidelity testing, the ES-2 dummy repeatability, reproducibility and durability are discussed.
Technical Paper

Development of an Advanced ATD Thorax System for Improved Injury Assessment in Frontal Crash Environments

1992-11-01
922520
Injuries to the thorax and abdomen comprise a significant percentage of all occupant injuries in motor vehicle accidents. While the percentage of internal chest injuries is reduced for restrained front-seat occupants in frontal crashes, serious skeletal chest injuries and abdominal injuries can still result from interaction with steering wheels and restraint systems. This paper describes the design and performance of prototype components for the chest, abdomen, spine, and shoulders of the Hybrid III dummy that are under development to improve the capability of the Hybrid III frontal crash dummy with regard to restraint-system interaction and injury-sensing capability.
Technical Paper

Development of a New Standard for Measurement of Impulse Noise Associated With Automotive Inflatable Devices

2005-05-16
2005-01-2398
The SAE Recommended Practice for measuring impulse noise from airbags, SAE J247, “Instrumentation for Measuring Acoustic Impulses within Vehicles”, was first published in 1971 and last affirmed in 1987. Many advances have occurred in understanding and technology since that time. Work in the automotive industry to investigate the characteristics of noise from airbag deployments has shown that large components of low frequency noise can be present when an airbag deploys in a closed vehicle. Others have shown that this low frequency noise can have a protective effect on the ear. Likewise, work for many years at the US Army Research Lab has investigated the risk of hearing loss for a human subjected to an acoustic impulse. That research led to the creation and validation of a mathematical model of the human ear, called Auditory Hazard Assessment Algorithm - Human (AHAAH).
Technical Paper

Development and Validation of Age-Dependent FE Human Models of a Mid-Sized Male Thorax

2010-11-03
2010-22-0017
The increasing number of people over 65 years old (YO) is an important research topic in the area of impact biomechanics, and finite element (FE) modeling can provide valuable support for related research. There were three objectives of this study: (1) Estimation of the representative age of the previously documented Ford Human Body Model (FHBM)~an FE model which approximates the geometry and mass of a mid-sized male, (2) Development of FE models representing two additional ages, and (3) Validation of the resulting three models to the extent possible with respect to available physical tests. Specifically, the geometry of the model was compared to published data relating rib angles to age, and the mechanical properties of different simulated tissues were compared to a number of published aging functions. The FHBM was determined to represent a 53-59 YO mid-sized male. The aforementioned aging functions were used to develop FE models representing two additional ages: 35 and 75 YO.
Technical Paper

Development and Evaluation of a Proposed Neck Shield for the 5th Percentile Hybrid III Female Dummy

2005-11-09
2005-22-0022
Frontal airbag interaction with the head and neck of the Hybrid III family of dummies may involve a nonbiofidelic interaction. Researchers have found that the deploying airbag may become entrapped in the hollow cavity behind the dummy chin. This study evaluated a prototype neck shield design, the Flap Neck Shield, for biofidelic response and the ability to prevent airbag entrapment in the chin/jaw cavity. Neck pendulum calibration tests were conducted for biofidelity evaluation. Static and dynamic airbag deployments were conducted to evaluate neck shield performance. Tests showed that the Flap Neck Shield behaved in a biofidelic manner with neck loads and head motion within established biofidelic limits. The Flap Neck Shield did not alter the neck loads during static or dynamic airbag interactions, but it did consistently prevent the airbag from penetrating the chin/jaw cavity.
Technical Paper

Determination of Impact Responses of ES-2re and SID-IIs - Part III: Development of Transfer Functions

2018-04-03
2018-01-1444
An understanding of stiffness characteristics of different body regions, such as thorax, abdomen and pelvis of ES-2re and SID-IIs dummies under controlled laboratory test conditions is essential for development of both compatible performance targets for countermeasures and occupant protection strategies to meet the recently updated FMVSS214, LINCAP and IIHS Dynamic Side Impact Test requirements. The primary purpose of this study is to determine the transfer functions between the ES-2re and SID-IIs dummies for different body regions under identical test conditions using flat rigid wall sled tests. The experimental set-up consists of a flat rigid wall with five instrumented load-wall plates aligned with dummy’s shoulder, thorax, abdomen, pelvis and femur/knee impacting a stationary dummy seated on a rigid low friction seat at a pre-determined velocity.
Technical Paper

Determination of Impact Responses of ES-2re and SID-IIs - Part I: ES-2re

2018-04-03
2018-01-1449
The main purpose of this study was to determine the impact responses of the different body regions (shoulder, thorax, abdomen and pelvis/leg) of the ES-2re and SID-IIs dummies using rigid wall impacts under different initial test conditions. The experimental set-up consisted of a flat rigid wall with five instrumented load-wall plates aligned with dummy’s shoulder, thorax, abdomen, pelvis and knee impacting a stationary dummy seated on a rigid seat at a pre-determined velocity. The relative location and orientation of the load-wall plates was adjusted relative to the body regions of the ES-2re and SID-IIs dummies respectively.
X