Refine Your Search

Topic

Author

Affiliation

Search Results

Event

2024-04-28
Event

2024-04-28
Event

2024-04-28
Standard

15 Pole Connector Between Towing Vehicles and Trailers with 12 Volt Nominal Supply

2020-02-25
CURRENT
J2691_202002
This SAE Standard establishes the minimum construction and performance requirements for a 15 pole connector between towing vehicles and trailers, for trucks, trailers, and dollies, for 12 VDC nominal applications in conjunction with SAE J2742. The connector accommodates both power and ISO 11992-1 signal circuits along with dual ground wires to accommodate grounding requirements within the constraints of the SAE J2691 terminal capacity.
Standard

15 Pole Connector Between Towing Vehicles and Trailers with 12 Volt Nominal Supply

2018-04-15
HISTORICAL
J2691_201804
This SAE standard establishes the minimum construction and performance requirements for a 15 Pole Connector Between Towing Vehicles and Trailers, for trucks, trailers, and dollies in conjunction with SAE J2742. The connector accommodates both power and ISO 11992-1 signal circuits along with dual ground wires to accommodate grounding requirements within the constraints of the SAE J2691 terminal capacity.
Standard

15 Pole Connector Between Towing Vehicles and Trailers with 12 Volt Nominal Supply

2013-04-09
HISTORICAL
J2691_201304
This SAE standard establishes the minimum construction and performance requirements for a 15 Pole Connector Between Towing Vehicles and Trailers, for trucks, trailers, and dollies in conjunction with SAE J2742 “Combination 11 Conductors and 4 Pairs ECBS Cable”. The connector accommodates both power and ISO 11992-1 signal circuits along with dual ground wires to accommodate grounding requirements within the constraints of the SAE J2691 terminal capacity.
Technical Paper

1D Modelling of Thermal Management of a Jet Trainer Aircraft

2023-03-07
2023-01-1005
Most of current jet aircraft circulate fuel on the airframe to match heat loads with available heat sink. The demands for thermal management in wide range of air vehicle systems are growing rapidly along with the increased mission power, vehicle survivability, flight speeds, and so on. With improved aircraft performance and growth of heat load created by Aircraft Mounted Accessory Drive (AMAD) system and hydraulic system, effectively removing the large amount of heat load on the aircraft is gaining crucial importance. Fuel is becoming heat transfer fluid of choice for aircraft thermal management since it offers improved heat transfer characteristics and offers fewer system penalties than air. In the scope of this paper, an AMESim model is built which includes airframe fuel and hydraulic systems with AMAD gearbox of a jet trainer aircraft. The integrated model will be evaluated for thermal performance.
Technical Paper

1D Thermo-Fluid Dynamic Simulation of a High Performance Lamborghini V12 S.I. Engine

2005-04-11
2005-01-0692
This paper describes the development and application of the 1D thermo-fluid dynamic research code GASDYN to the simulation of a Lamborghini 12 cylinder, V 60°, 6.2 L automotive S.I. engine. The model has been adopted to carry out an integrated simulation (thermodynamic, fluid dynamic and chemical) of the engine coupled to its intake and exhaust manifolds, in order to predict not only the wave motion in the ducts and its influence on the cylinder gas exchange process, but also the in-cylinder combustion process and the pollutant emission concentration along the exhaust system. The gas composition in the exhaust pipe system is dictated by the cylinder discharge process, after the calculation of the combustion via a thermodynamic multi-zone model, based on a “fractal geometry” approach.
Journal Article

2-Drive Motor Control Unit for Electric Power Steering

2017-03-28
2017-01-1485
The electric power steering (EPS) is increasing its number since there are many advantages compared to hydraulic power steering. The EPS saves fuel and eliminates hydraulic fluid. Also, it is more suitable to the cooperation control with the other vehicle components. The EPS is now expanding to the heavier vehicle with the advance in the power electronics. In order to meet customer's needs, such as down-sizing, lower failure rate and lower price, we have developed the new motor control unit (MCU) for the EPS. The motor and the electric control unit (ECU) were integrated for the better installation. We adopted new technologies of redundant 2-drive design for more safe EPS. “2-drive Motor Control technology” which consists of dual winding, two torque sensors and two inverter drive units. In our developed MCU, even if there is a failure in one of the drive unit, the assistance of the EPS can be maintained with the other drive unit.
Event

2022 COMVEC™

2024-04-28
COMVEC™ conference is the only North American event that addresses vehicles and equipment spanning on-highway, off-highway, agricultural, construction, industrial, military, and mining sectors.
Technical Paper

250 Bar Vane Pump

1991-09-01
911801
Fixed displacement pumps will continue to be a popular choice for hydraulic system designers for decades to come. These pumps are used in almost every industrial and mobile market segment and are generally less expensive than comparable variable displacement type pumps. Fixed displacement “Vane Type” pumps are especially popular because of their low noise characteristics as well as their inherent repair features. The demand for “Vane Type” fixed displacement pumps continues to grow in all market segments. Because of this continued demand, a new design of “fixed displacement vane pumps” is being developed. These pumps, designated the VPF Series, are targeted to offer continuous operating pressures up to 280 BAR with displacements from 40 to 215 cc/rev.
Technical Paper

3-D Scanning Vibrometry Enables Efficient Experimental Modal Analysis of Large and Complex Structures for NVH-Optimised Vehicles

2007-01-17
2007-26-034
In the design and development of modern cars with respect to comfort, silence and safety, state of the art experimental modal analysis is one of the essential development tools. Due to the large amount of degrees of freedom of such a large and complex system like a car with all its components, a complete simulation by FEM can not be realised easily and requires an enormous expenditure of work and calculations. In addition the simulations are based on assumed system parameters and thus the vibration behaviour of the resulting prototypes often is not completely identical to the simulated model. In contrast to conventional measurements with accelerometers, the 3-D Scanning Vibrometer enables fast and efficient non-contact measurements of the in-plane and out-of-plane vibration behaviour at all optical accessible surfaces. The method easily allows to increase the number of measured points to obtain a high measurement point density.
Technical Paper

3D Design and Surface Mapping of Disc Brake Pad for High Speed Train Using FEA

2018-04-03
2018-01-0841
Recurrently, the increase in production of high-speed trains worldwide has become a confirmed fact. Seeking to use the high-speed trains locally to link the capital of Egypt “Cairo” with the new industrial cities has become a national requirement. Modeling 3D surface maps using finite element analysis (FEA) is one of the most important mechanical design tools for frictional parts to facilitate the manufacture of brake systems for heavy duty vehicles, especially high-speed trains due to difficult working conditions. In this paper, we presented simulate 3D surface maps for proposed frictional material pad using FEA at certain design parameters and experimental result conductions. The typical surface characteristics of disc brake pad are compared with commonly used materials in railway and vehicle brakes in Egypt.
Technical Paper

4-Sensor 2-Channel Anti-Lock System for FWD Cars

1986-02-01
860511
The possibility of 2 Channel anti-lock system, which controls each of two independent hydraulic circuits of diagonal split braking system of FWD car seperately, were studied. Theoretical investigation suggested two out of four possible control logics to be promising and they were proved to be practically satisfactory through vehicle test. This system is almost as effective as expensive 3-channel or 4-channel system, when the braking force distribution between front and rear axles is correct as required by EEC Braking regulation. Under extreme condition that rear wheels lock earlier than fronts, the compromise between stopping distance and stability is necessary.
X