Refine Your Search

Topic

Author

Search Results

Technical Paper

The Upper-Load Extension of a Boosted Direct Injection Poppet Valve Two-Stroke Gasoline Engine

2016-10-17
2016-01-2339
Engine downsizing can effectively improve the fuel economy of spark ignition (SI) gasoline engines, but extreme downsizing is limited by knocking combustion and low-speed pre-ignition at higher loads. A 2-stroke SI engine can produce higher upper load compared to its naturally aspirated 4-stroke counterpart with the same displacement due to the double firing frequency at the same engine speed. To determine the potential of a downsized two-cylinder 2-stroke poppet valve SI gasoline engine with 0.7 L displacement in place of a naturally aspirated 1.6 L gasoline (NA4SG) engine, one-dimensional models for the 2-stroke gasoline engine with a single turbocharger and a two-stage supercharger-turbocharger boosting system were set up and validated by experimental results.
Technical Paper

The Modeling and Design of a Boosted Uniflow Scavenged Direct Injection Gasoline (BUSDIG) Engine

2015-09-01
2015-01-1970
Engine downsizing of the spark ignition gasoline engine is recognized as one of the most effective approaches to improve the fuel economy of a passenger car. However, further engine downsizing beyond 50% in a 4-stroke gasoline engine is limited by the occurrence of abnormal combustion events as well as much greater thermal and mechanical loads. In order to achieve aggressive engine downsizing, a boosted uniflow scavenged direct injection gasoline (BUSDIG) engine concept has been proposed and researched by means of CFD simulation and demonstration in a single cylinder engine. In this paper, the intake port design on the in-cylinder flow field and gas exchange characteristics of the uniflow 2-stroke cycle was investigated by computational fluid dynamics (CFD). In particular, the port orientation on the in-cylinder swirl, the trapping efficiency, charging efficiency and scavenging efficiency was analyzed in details.
Technical Paper

The Effect of Spark Ignition on the CAI Combustion Operation

2005-10-24
2005-01-3738
The present paper aims to investigate the influence of spark ignition on CAI combustion based on internal EGR strategy. Controlled Auto-ignition (CAI) combustion is facilitated in a Ricardo single cylinder engine with a pair of special camshafts, which valve lift and cam profile are modified to trap enough hot residuals. Operation regions and other detailed combustion characteristics of the CAI engine operation are analyzed and compared between pure CAI mode and the CAI mode with assisted spark ignition. The results show that spark ignition can play an important role in controlling CAI combustion ignition in low load boundary region. The low temperature chemical reaction process is shortened and the auto ignition timing is advanced due to the spark discharge. Meantime, lower fuel consumption and cycle-to-cycle variations can be achieved.
Technical Paper

The Dilution, Chemical, and Thermal Effects of Exhaust Gas Recirculation on Diesel Engine Emissions - Part 1: Effect of Reducing Inlet Charge Oxygen

1996-05-01
961165
This is a first of a series of papers describing how the replacement of some of the inlet air with EGR modifies the diesel combustion process and thereby affects the exhaust emissions. This paper deals with only the reduction of oxygen in the inlet charge to the engine (dilution effect). The oxygen in the inlet charge to a direct injection diesel engine was progressively replaced by inert gases, whilst the engine speed, fuelling rate, injection timing, total mass and the specific heat capacity of the inlet charge were kept constant. The use of inert gases for oxygen replacement, rather than carbon dioxide (CO2) or water vapour normally found in EGR, ensured that the effects on combustion of dissociation of these species were excluded. In addition, the effects of oxygen replacement on ignition delay were isolated and quantified.
Technical Paper

The Combustion and Emission Characteristics of Ethanol on a Port Fuel Injection HCCI Engine

2006-04-03
2006-01-0631
With the application of valve timing strategy to inlet and exhaust valves, Homogeneous Charge Compression Ignition (HCCI) combustion was achieved by varying the amount of trapped residuals through negative valve overlap on a Ricardo Hydra four-stroke port fuel injection engine fueled with ethanol. The effect of ethanol on HCCI combustion and emission characteristics at different air-fuel ratios, speeds and valve timings was investigated. The results indicate that HCCI ethanol combustion can be achieved through changing inlet and exhaust valve timings. HCCI ethanol combustion range can be expanded to high speeds and lean burn mixture. Meanwhile, the factors influencing ignition timing and combustion duration are valve timing, lambda and speeds. Moreover, NOx emissions are extremely low under HCCI combustion. The emissions-speed and emissions-lambda relationships are obtained and analyzed.
Technical Paper

Study on Layered Close Loop Control of 4-Stroke Gasoline HCCI Engine Equipped with 4VVAS

2008-04-14
2008-01-0791
Homogeneous Charge Compression Ignition (HCCI) has the potential of reducing fuel consumption as well as NOx emissions. However, it is still confronted with problems in real-time control system and control strategy for the application of HCCI, which are studied in detail in this paper. A CAN-bus-based distributed HCCI control system was designed to implement a layered close loop control for HCCI gasoline engine equipped with 4VVAS. Meanwhile, a layered management strategy was developed to achieve high real-time control as well as to simplify the couplings between the inputs and the outputs. The entire control system was stratified into three layers, which are responsible for load (IMEP) management; combustion phase (CA50) control and mechanical system control respectively, each with its own specified close loop control strategy. The system is outstanding for its explicit configuration, easy actualization and robust performance.
Technical Paper

Study of Flame Speed and Knocking Combustion of Gasoline, Ethanol and Hydrous Ethanol (10% Water) at Different Air/Fuel Ratios with Port-Fuel Injection

2018-04-03
2018-01-0655
In this paper, an experimental study was performed to investigate characteristics of flame propagation and knocking combustion of hydrous (10% water content) and anhydrous ethanol at different air/fuel ratios in comparison to RON95 gasoline. Experiments were conducted in a full bore overhead optical access single cylinder port-fuel injection spark-ignition engine. High speed images of total chemiluminescence and OH* emission was recorded together with the in-cylinder pressure, from which the heat release data were derived. The results show that under the stoichiometric condition anhydrous ethanol and wet ethanol with 10% water (E90W10) generated higher IMEP with at an ignition timing slightly retarded from MBT than the gasoline fuel for a fixed throttle position. Under rich and stoichiometric conditions, the knock limited spark timing occurred at 35 CA BTDC whereas both ethanol and E90W10 were free from knocking combustion at the same operating condition.
Technical Paper

Simulation of the Effect of Intake Pressure and Split Injection on Lean Combustion Characteristics of a Poppet-Valve Two-Stroke Direct Injection Gasoline Engine at High Loads

2018-09-10
2018-01-1723
Poppet-valve two-stroke gasoline engines can increase the specific power of their four-stroke counterparts with the same displacement and hence decrease fuel consumption. However, knock may occur at high loads. Therefore, the combustion with stratified lean mixture was proposed to decrease knock tendency and improve combustion stability in a poppet-valve two-stroke direct injection gasoline engine. The effect of intake pressure and split injection on fuel distribution, combustion and knock intensity in lean mixture conditions at high loads was simulated with a three-dimensional computational fluid dynamic software. Simulation results show that with the increase of intake pressure, the average fuel-air equivalent ratio in the cylinder decreases when the second injection ratio was fixed at 70% at a given amount of fuel in a cycle.
Technical Paper

Reduction of Methane Slip Using Premixed Micro Pilot Combustion in a Heavy-Duty Natural Gas-Diesel Engine

2015-09-01
2015-01-1798
An experimental study has been carried out with the end goal of minimizing engine-out methane emissions with Premixed Micro Pilot Combustion (PMPC) in a natural gas-diesel Dual-Fuel™ engine. The test engine used is a heavy-duty single cylinder engine with high pressure common rail diesel injection as well as port fuel injection of natural gas. Multiple variables were examined, including injection timings, exhaust gas recirculation (EGR) percentages, and rail pressure for diesel, conventional Dual-Fuel, and PMPC Dual-Fuel combustion modes. The responses investigated were pressure rise rate, engine-out emissions, heat release and indicated specific fuel consumption. PMPC reduces methane slip when compared to conventional Dual-Fuel and improves emissions and fuel efficiency at the expense of higher cylinder pressure.
Technical Paper

Potentials of External Exhaust Gas Recirculation and Water Injection for the Improvement in Fuel Economy of a Poppet Valve 2-Stroke Gasoline Engine Equipped with a Two-Stage Serial Charging System

2018-04-03
2018-01-0859
Engine downsizing is one of the most effective means to improve the fuel economy of spark ignition (SI) gasoline engines because of lower pumping and friction losses. However, the occurrence of knocking combustion or even low-speed pre-ignition at high loads is a severe problem. One solution to significantly increase the upper load range of a 4-stroke gasoline engine is to use 2-stroke cycle due to the double firing frequency at the same engine speed. It was found that a 0.7 L two-cylinder 2-stroke poppet valve gasoline engine equipped with a two-stage serial boosting system, comprising a supercharger and a downstream turbocharger, could replace a 1.6 L naturally aspirated 4-stroke gasoline engine in our previous research, but its fuel economy was close to that of the 4-stroke engine at upper loads due to knocking combustion.
Technical Paper

Performance and Analysis of a 4-Stroke Multi-Cylinder Gasoline Engine with CAI Combustion

2002-03-04
2002-01-0420
Controlled Auto-Ignition (CAI) combustion was realised in a production type 4-stroke 4-cylinder gasoline engine without intake charge heating or increasing compression ratio. The CAI engine operation was achieved using substantially standard components modified only in camshafts to restrict the gas exchange process The engine could be operated with CAI combustion within a range of load (0.5 to 4 bar BMEP) and speed (1000 to 3500 rpm). Significant reductions in both specific fuel consumption and CO emissions were found. The reduction in NOx emission was more than 93% across the whole CAI range. Though unburned hydrocarbons were higher under the CAI engine operation. In order to evaluate the potential of the CAI combustion technology, the European NEDC driving cycle vehicle simulation was carried out for two identical vehicles powered by a SI engine and a CAI/SI hybrid engine, respectively.
Technical Paper

Lubricant Induced Pre-Ignition in an Optical SI Engine

2014-04-01
2014-01-1222
This work was concerned with study of lubricant introduced directly into the combustion chamber and its effect on pre-ignition and combustion in an optically accessed single-cylinder spark ignition engine. The research engine had been designed to incorporate full bore overhead optical access capable of withstanding peak in-cylinder pressures of up to 150bar. An experiment was designed where a fully formulated synthetic lubricant was deliberately introduced through a specially modified direct fuel injector to target the exhaust area of the bore. Optical imaging was performed via natural light emission, with the events recorded at 6000 frames per second. Two port injected fuels were evaluated including a baseline commercial grade gasoline and low octane gasoline/n-heptane blend. The images revealed the location of deflagration sites consistently initiating from the lubricant itself.
Book

Laser Diagnostics and Optical Measurement Techniques in Internal Combustion Engines

2012-07-30
The increasing concern about CO2 emissions and energy prices has led to new CO2 emission and fuel economy legislation being introduced in world regions served by the automotive industry. In response, automotive manufacturers and Tier-1 suppliers are developing a new generation of internal combustion (IC) engines with ultra-low emissions and high fuel efficiency. To further this development, a better understanding is needed of the combustion and pollutant formation processes in IC engines. As efficiency and emission abatement processes have reached points of diminishing returns, there is more of a need to make measurements inside the combustion chamber, where the combustion and pollutant formation processes take place. However, there is currently no good overview of how to make these measurements.
Technical Paper

Investigation on Knock Resistance with Turbulent Jet Ignition at Different Engine Load in an Optical Engine

2019-12-19
2019-01-2151
This research was focused on the effect of pre-chamber ignition and compared the knock limit of normal spark ignition in the main chamber and pre-chamber jet ignition combustion in a spark ignition gasoline engine. Experiments were conducted in a single-cylinder engine with optical access. Engine was operated with stoichiometric air/fuel mixtures at 1200 rev/min and different inlet pressures of 1, 1.2, and 1.4 bar. No auxiliary fuel was injected into the pre-chamber when jet-ignition mode was used. The results show that significant knock limit extension can be realized with use of a pre-chamber ignition unit. The main differences in engine performance, heat release and combustion, knock resistance and flame propagation were compared between the pre-chamber ignition and conventional spark ignition in the main chamber by in-cylinder pressure measurements and high-speed flame chemiluminescence imaging.
Technical Paper

Investigation of EGR and Miller Cycle for NOx Emissions and Exhaust Temperature Control of a Heavy-Duty Diesel Engine

2017-10-08
2017-01-2227
In order to meet increasingly stringent emissions standards and lower the fuel consumption of heavy-duty (HD) vehicles, significant efforts have been made to develop high efficiency and clean diesel engines and aftertreatment systems. However, a trade-off between the actual engine efficiency and nitrogen oxides (NOx) emission remains to minimize the operational costs. In addition, the conversion efficiency of the diesel aftertreatment system decreases rapidly with lower exhaust gas temperatures (EGT), which occurs at low load operations. Thus, it is necessary to investigate the optimum combustion and engine control strategies that can lower the vehicle’s running costs by maintaining low engine-out NOx emissions while increasing the conversion efficiency of the NOx aftertreament system through higher EGTs.
Technical Paper

Innovative Ultra-low NOx Controlled Auto-Ignition Combustion Process for Gasoline Engines: the 4-SPACE Project

2000-06-19
2000-01-1837
The purpose of the 4-SPACE (4-Stroke Powered gasoline Auto-ignition Controlled combustion Engine) industrial research project is to research and develop an innovative controlled auto-ignition combustion process for lean burn automotive gasoline 4-stroke engines application. The engine concepts to be developed could have the potential to replace the existing stoichiometric / 3-way catalyst automotive spark ignition 4-stroke engines by offering the potential to meet the most stringent EURO 4 emissions limits in the year 2005 without requiring DeNOx catalyst technology. A reduction of fuel consumption and therefore of corresponding CO2 emissions of 15 to 20% in average urban conditions of use, is expected for the « 4-SPACE » lean burn 4-stroke engine with additional reduction of CO emissions.
Technical Paper

In-cylinder Studies of Multiple Diesel Fuel Injection in a Single Cylinder Optical Engine

2005-04-11
2005-01-0915
An experimental study has been carried out on the multiple fuel injection process and its effect on the mixing and combustion in a single cylinder diesel engine with optical access. The engine is equipped with a production type cylinder head and a high pressure common rail fuel system which comprises a directly driven high pressure fuel pump and a control system capable of 8 injections per stroke. The single cylinder optical engine could be operated lubrication-free for up to 5 minutes due to the application of special coating on the piston liner and careful design of the piston and extended cylinder block. The in-cylinder spray and combustion were visualized at 10,000 fps by a high-speed colour video camera and a copper vapour laser. The high-speed video recordings and in-cylinder pressure and heat release analysis for up to four fuel injections will be presented and discussed.
Technical Paper

In-Cylinder Measurements of Fuel Stratification in a Twin-Spark Three-Valve SI Engine

2004-03-08
2004-01-1354
In order to take advantage of different properties of fuel components or fractions, a new concept of fuel stratification has been proposed by the authors. This concept requires that two fractions of standard gasoline (e.g., light and heavy fractions) or two different fuels in a specially formulated composite be introduced into the cylinder separately through two separate intake ports. The two fuels will be stratified into two regions in the cylinder by means of strong tumble flows. In order to verify and optimize the fuel stratification, a two-tracer Laser Induced Fluorescence (LIF) technique was developed and applied to visualize fuel stratification in a three-valve twin-spark SI engine. This was realized by detecting simultaneously fluorescence emissions from 3-pentanone in one fuel (hexane) and from N,N-dimethylaniline (DMA) in the other fuel (iso-octane).
Technical Paper

Impact of Port Fuel Injection and In-Cylinder Fuel Injection Strategies on Gasoline Engine Emissions and Fuel Economy

2016-10-17
2016-01-2174
As the emission regulations for internal combustion engines are becoming increasingly stringent, different solutions have been researched and developed, such as dual injection systems (combined port and direct fuel injection), split injection strategies (single and multiple direct fuel injection) and different intake air devices to generate an intense in-cylinder air motion. The aim of these systems is to improve the in-cylinder mixture preparation (in terms of homogeneity and temperature) and therefore enhance the combustion, which ultimately increases thermal efficiency and fuel economy while lowering the emissions. This paper describes the effects of dual injection systems on combustion, efficiency and emissions of a downsized single cylinder gasoline direct injection spark ignited (DISI) engine. A set of experiments has been conducted with combined port fuel and late direct fuel injection strategy in order to improve the combustion process.
Technical Paper

Gasoline Engine Operation with Twin Mechanical Variable Lift (TMVL) Valvetrain Stage 1: SI and CAI Combustion with Port Fuel Injection

2005-04-11
2005-01-0752
This paper describes the results of the first stage of an integrated experimental and modelling programme on a gasoline engine with Twin Mechanical Variable Lift (TMVL) capability. The engine used for this work was a modified version of a 4 cylinder, 2.0 litre BMW engine. The modified engine has the “Valvetronic” continuously variable lift valvetrain on both the inlet and exhaust valves and dual independent cam phasers with 60 crankshaft degrees of phasing authority. The Valvetronic system allows continuous variation of the valve lift from a minimum of 0.25 mm to a maximum of 9.7 mm.
X