Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Visualization of Direct-Injection Gasoline Spray and Wall-impingement Inside a Motoring Engine

1998-10-19
982702
Two-dimensional pulse-laser Mie scattering visualization of the direct-injection gasoline fuel sprays and wall impingement processes was carried out inside a single-cylinder optically accessible engine under motoring condition. The injectors have been first characterized inside a pressurized chamber using identical technique, as well as high-speed microscopic visualization and phase Doppler measurement techniques. The effects of injector cone angle, location, and injection timings on the wall impingement processes were investigated. It was found that the fuel vaporization is not complete at the constant engine speed tested. Fuel spray droplets were observed to disperse wider in the motored engine when compared with an isothermal quiescent ambient conditions. The extent of wall-impingement varies significantly with the injector mounting position and spray cone angle; however, its effect can be reduced to some extent by optimizing the injection timing.
Technical Paper

Visualization and Analysis of the Impingement Processes of a Narrow-Cone DI Gasoline Spray

2001-05-07
2001-01-2023
The direct injection spray-wall interactions were investigated experimentally using high-speed laser-sheet imaging, shadowgraphy, wetted footprints and phase Doppler interferometry techniques. A narrow-cone high-pressure swirl injector is used to inject iso-octane fuel onto a plate, at three different impact angles inside a pressurized chamber. Heated air and plate conditions were compared with unheated cases. Injection interval was also varied in the heated case to compare dry- and wet- wall impingement behaviors. High-speed macroscopic Mie-scattering images showed that presence of wall and air temperature has only minor effect on the bulk spray structure and penetration speed for the narrow-cone injector tested. The overall bulk motions of the spray plume and its spatial position at a given time are basically unaffected until a few millimeters before impacting the wall.
Technical Paper

Understanding HCCI Combustion in a Free Piston Engine with a Multi-Zone, Control-Mass Model with Thermal Stratification and Chemical Kinetics

2019-04-02
2019-01-0958
Homogeneous Charge Compression Ignition (HCCI) is a combustion concept with the potential for future clean and efficient automotive powertrains. In HCCI, the thermal stratification has been proven to play an important role in dictating the combustion process, mainly caused by heat transfer to the wall during compression. In this study, a multi-zone, control-mass model with thermal stratification and chemical kinetics was developed to simulate HCCI combustion. In this kind of model, the initial conditions and the zonal heat transfer fraction distribution are critical for the modeling accuracy and usually require case-by-case tuning. Instead, in this study, the Thermal Stratification Analysis (TSA) methodology is used to generate the zonal heat transfer fraction distribution from experimental HCCI data collected on a fired, metal engine.
Technical Paper

Ultrafast X-Ray Phase-Enhanced Microimaging for Visualizing Fuel Injection Process

2005-09-11
2005-24-093
Propagation-based and phase-enhanced x-ray imaging was developed as a unique metrology technique to visualize the internal structure of high-pressure fuel injection nozzles. We have visualized the microstructures inside 200-μm fuel injection nozzles in a 3-mm-thick steel housing using this novel technique. Furthermore, this new x-ray-based metrology technique has been used to directly study the highly transient needle motion in the nozzles in situ and in real-time, which is virtually impossible by any other means. The needle motion has been shown to have the most direct effect on the fuel jet structure and spray formation immediately outside of the nozzle. In addition, the spray cone-angle has been perfectly correlated with the numerically simulated fuel flow inside the nozzle due to the transient nature of the needle during the injection.
Technical Paper

Transient Flow and Pressure Characteristics Inside a Closed-Coupled Catalytic Converter

1998-10-19
982548
An experimental study was carried out to characterize the exhaust flow structure inside the closed-coupled catalytic converter, which is installed on a firing four-cylinder 12-valve passenger car gasoline engine. Simultaneous velocity and pressure measurements were taken using cycle-resolved Laser Doppler anemometer (LDA) technique and pressure transducer. A small fraction of titanium (IV) iso-propoxide was dissolved in gasoline to generate titanium dioxide during combustion as seeding particles for the LDA measurements. It was found that the velocity is highly fluctuating due to the pulsating nature of the engine exhaust flow, which strongly depends on the engine operating conditions and the measuring locations. The pressure oscillation is correlated with the transient exhaust flow characteristics. The main exhaust flow event from each cylinder can only be observed at the certain region in front of the monolith brick.
Technical Paper

Transient Flow Characteristics Inside the Catalytic Converter of a Firing Gasoline Engine

1997-02-24
971014
An experimental study was performed, using cycle-resolved laser Doppler velocimetry (LDV) technique, to characterize the exhaust flow structure inside a catalytic converter retro-fitted to a firing four-cylinder gasoline engine over different operating conditions. A small fraction of titanium (IV) isopropoxide was dissolved in gasoline to generate titanium dioxide during combustion as seeding particles for LDV measurements. It was found that in the front plane of the catalytic monolith, the velocity is highly fluctuating due to the pulsating nature of the engine exhaust flow, which strongly depends on the engine operating conditions. Under unloaded condition, four pairs of major peaks are clearly observed in the time history of the velocity, which correspond to the main exhaust events of each individual cylinder.
Technical Paper

Transient Cavitating Flow Simulations Inside a 2-D VCO Nozzle Using the Space-Time CE/SE Method

2001-05-07
2001-01-1983
Cavitating flows inside a two-dimensional valve covered orifice (VCO) nozzle were simulated by using the Space-Time Conservation Element and Solution Element (CE/SE) method in conjunction with a homogeneous equilibrium cavitation model. As a validation for present model, cavitation over a NACA0015 hydrofoil was predicted and compared with previous simulation results as well as experimental observations. The model was then used to investigate the effects on internal cavitating flows of different nozzle design parameters, such as the hole size, hole aspect-ratio, hydro-erosion radius, and orifice inclination. Under different conditions, cavitating flows through fuel injectors generated hydraulic flip, supercavitation, full cavitation, and cyclical cavitation phenomena, which are commonly observed in experiments.
Technical Paper

Time-Resolved Measurements in Transient Port Injector Sprays

1995-02-01
950509
A global characterization of the spray distribution of various current and development types of automotive fuel injectors was obtained. Axial and radial measurement of droplet sizes, velocities and volume fluxes were made with a phase Doppler particle analyzer (PDPA) for a transient port injector spray in quiescent atmospheric conditions. Time-resolved measurements involving the time-of-arrival of each droplet associated with its size and velocity components were also acquired. Additionally, the liquid sprays emanating from various types of port fuel injectors were visualized, through planar laser induced fluorescence (PLIF) technique, at different time instants. Such detailed study provides an improved understanding of the temporal or unsteady behavior of port injector spray.
Journal Article

Thermodynamic Modeling of Military Relevant Diesel Engines with 1-D Finite Element Piston Temperature Estimation

2023-04-11
2023-01-0103
In military applications, diesel engines are required to achieve high power outputs and therefore must operate at high loads. This high load operation leads to high piston component temperatures and heat rejection rates limiting the packaged power density of the powertrain. To help predict and understand these constraints, as well as their effects on performance, a thermodynamic engine model coupled to a finite element heat conduction solver is proposed and validated in this work. The finite element solver is used to calculate crank angle resolved, spatially averaged piston temperatures from in-cylinder heat transfer calculations. The calculated piston temperatures refine the heat transfer predictions as well requiring iteration between the thermodynamic model and finite element solver.
Technical Paper

Thermodynamic Analysis of Novel 4-2 Stroke Opposed Piston Engine

2021-09-05
2021-24-0096
In this work, a novel opposed piston architecture is proposed where one crankshaft rotates at twice the speed of the other. This results in one piston creating a 2-stroke profile and another with a 4-stroke profile. In this configuration, the slower piston operates in the 2-stroke CAD domain, while the faster piston completes 2 reciprocating cycles in the same amount of time (4-stroke). The key benefit of this cycle is that the 4-stroke piston increases the rate of compression and expansion (dV/dθ), which lowers the combustion-induced pressure rise rate after top dead center (crank angle location of minimum volume). Additionally, it lowers in-cylinder temperatures and pressures more rapidly, resulting in a lower residence time at high temperatures, which reduces residence time for thermal NOx formation and reduces the temperature differential between the gas and the wall, thereby reducing heat transfer.
Technical Paper

The Influence of Swirl Ratio on Turbulent Flow Structure in a Motored HSDI Diesel Engine - A Combined Experimental and Numerical Study

2004-03-08
2004-01-1678
Simultaneous two-component measurements of gas velocity and multi-dimensional numerical simulation are employed to characterize the evolution of the in-cylinder turbulent flow structure in a re-entrant bowl-in-piston engine under motored operation. The evolution of the mean flow field, turbulence energy, turbulent length scales, and the various terms contributing to the production of the turbulence energy are correlated and compared, with the objectives of clarifying the physical mechanisms and flow structures that dominate the turbulence production and of identifying the source of discrepancies between the measured and simulated turbulence fields. Additionally, the applicability of the linear turbulent stress modeling hypothesis employed in the k-ε model is assessed using the experimental mean flow gradients, turbulence energy, and length scales.
Journal Article

The Ignition Behavior of a Coal to Liquid Fischer-Tropsch Jet Fuel in a Military Relevant Single Cylinder Diesel Engine

2012-04-16
2012-01-1197
The U.S. Army currently uses JP-8 for global operations according to the "one fuel forward policy" that was enacted almost twenty years ago in order to help reduce the logistics burden of supplying a variety of fuels for given Department of Defense vehicle and base applications. One particular challenge with using global JP-8 is the lack of or too broad a range of specified combustion and fuel system affecting properties including ignition quality, high temperature viscosity, and lubricity. In addition to these challenges, the JP-8 fuel specification currently allows the use of blending with certain types of synthetic jet fuels up to 50% by volume. This blended fuel also doesn't include an ignition quality or high temperature viscosity specification, but does include a lubricity specification that is much less restrictive than DF-2.
Journal Article

The Effects of Thick Thermal Barrier Coatings on Low-Temperature Combustion

2020-04-14
2020-01-0275
An experimental study was conducted on a Ricardo Hydra single-cylinder light-duty diesel research engine. Start of Injection (SOI) timing sweeps from -350 deg aTDC to -210 deg aTDC were performed on a total number of five pistons including two baseline metal pistons and three coated pistons to investigate the effects of thick thermal barrier coatings (TBCs) on the efficiency and emissions of low-temperature combustion (LTC). A fuel with a high latent heat of vaporization, wet ethanol, was chosen to eliminate the undesired effects of thick TBCs on volumetric efficiency. Additionally, the higher surface temperatures of the TBCs can be used to help vaporize the high heat of vaporization fuel and avoid excessive wall wetting. A specialized injector with a 60° included angle was used to target the fuel spray at the surface of the coated piston.
Technical Paper

TSCI with Wet Ethanol: An Investigation of the Effects of Injection Strategy on a Diesel Engine Architecture

2019-04-02
2019-01-1146
Thermally Stratified Compressions Ignition (TSCI) is a new advanced, low temperature combustion concept that aims to control the thermal stratification in the cylinder in order to control the heat release process in a lean, compression-ignition combustion mode. This work uses “wet ethanol”, a mixture of 80% ethanol and 20% water by mass, to increase thermal stratification beyond what naturally occurs, via evaporative cooling of a split direct injection. TSCI with wet ethanol has previously shown the potential to increase the high-load limit when compared to HCCI. The experiments conducted in this paper aim to fundamentally understand the effect that injection strategy has on the heat release process in TSCI. TSCI employs a split-injection strategy in which an injection during the intake stroke allows the majority of the fuel to premix with the air and an injection during the compression stroke introduces the desired level of thermal stratification to control the heat release rate.
Technical Paper

Spray Targeting Inside a Production-Type Intake Port of a 4-Valve Gasoline Engine

1996-02-01
960115
An experimental study was carried out to investigate the spray behavior inside engine intake ports. Production-type intake ports of four-valve gasoline engines were modified for the optical access at directions. The global spray formation process was visualized through laser Mie scattering technique. The spray breakup and atomization processes, spray targeting and fuel dispersing characteristics were investigated as a function of elapse time after fuel injection. The spray interaction with the port wall and port air flow were examined with different types of port fuel injectors including single-stream, multi-stream, and air-shrouded ones. The spray targeting and dispersing characteristics inside two different intake ports were examined. It was found that spray targeting and fuel dispersion inside the intake port are strongly dependent on the spray characteristics, as a result of different injector designs and injector installation positions.
Journal Article

Spray Characterization of Ethanol Gasoline Blends and Comparison to a CFD Model for a Gasoline Direct Injector

2010-04-12
2010-01-0601
Operation of flex fuel vehicles requires operation with a range of fuel properties. The significant differences in the heat of vaporization and energy density of E0-E100 fuels and the effect on spray development need to be fully comprehended when developing engine control strategies. Limited enthalpy for fuel vaporization needs to be accounted for when developing injection strategies for cold start, homogeneous and stratified operation. Spray imaging of multi-hole gasoline injectors with fuels ranging from E0 to E100 and environmental conditions that represent engine operating points from ambient cold start to hot conditions was performed in a spray chamber. Schlieren visualization technique was used to characterize the sprays and the results were compared with Laser Mie scattering and Back-lighting technique. Open chamber experiments were utilized to provide input and validation of a CFD model.
Technical Paper

Spectral Analysis and Chemiluminescence Imaging of Hydrogen Addition to HSDI Diesel Combustion Under Conventional and Low-Temperature Conditions

2004-10-25
2004-01-2919
Late-injection low-temperature diesel combustion is found to further reduce NOx and soot simultaneously. The combustion phenomena and detail chemical kinetics are studied with high speed spray/combustion images and time-resolved spectroscopy analysis in a rapid compression machine (RCM) with a small bowl combustion chamber. High swirl and high EGR condition can be achieved in the RCM; variable injection pressure and injection timing is supplied by the high-pressure common-rail fuel injection system. Effect of small amount of premix hydrogen gas on diesel combustion is also studied in the RCM. A hydrogen injector is located in the upstream of air inlet for delivery small amount and premixed hydrogen gas into cylinder just before the compression stroke. The ignition delay is studied both from the pressure curves and the chemiluminescence images.
Journal Article

Role of Volatility in the Development of JP-8 Surrogates for Diesel Engine Application

2014-04-01
2014-01-1389
Surrogates for JP-8 have been developed in the high temperature gas phase environment of gas turbines. In diesel engines, the fuel is introduced in the liquid phase where volatility plays a major role in the formation of the combustible mixture and autoignition reactions that occur at relatively lower temperatures. In this paper, the role of volatility on the combustion of JP-8 and five different surrogate fuels was investigated in the constant volume combustion chamber of the Ignition Quality Tester (IQT). IQT is used to determine the derived cetane number (DCN) of diesel engine fuels according to ASTM D6890. The surrogate fuels were formulated such that their DCNs matched that of JP-8, but with different volatilities. Tests were conducted to investigate the effect of volatility on the autoignition and combustion characteristics of the surrogates using a detailed analysis of the rate of heat release immediately after the start of injection.
Technical Paper

Refinement and Validation of the Thermal Stratification Analysis: A post-processing methodology for determining temperature distributions in an experimental HCCI engine

2014-04-01
2014-01-1276
Refinements were made to a post-processing technique, termed the Thermal Stratification Analysis (TSA), that couples the mass fraction burned data to ignition timing predictions from the autoignition integral to calculate an apparent temperature distribution from an experimental HCCI data point. Specifically, the analysis is expanded to include all of the mass in the cylinder by fitting the unburned mass with an exponential function, characteristic of the wall-affected region. The analysis-derived temperature distributions are then validated in two ways. First, the output data from CFD simulations are processed with the Thermal Stratification Analysis and the calculated temperature distributions are compared to the known CFD distributions.
Technical Paper

Quantitative Measurements of Direct-Injection Gasoline Fuel Sprays in Near-Nozzle Region Using Synchrotron X-Ray

2001-03-05
2001-01-1293
A quantitative and time-resolved technique has been developed to probe the dense spray structure of direct-injection (DI) gasoline sprays in near-nozzle region. This technique uses the line-of-sight absorption of monochromatic x-rays from a synchrotron source to measure the fuel mass with time resolution better than 1 μs. The small scattering cross-section of fuel at x-rays regime allows direct measurements of spray structure that are difficult with most visible-light optical techniques. Appropriate models were developed to determine the fuel density as a function of time.
X