Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Visualization of the Heat Transfer Surface of EGR Cooler to Examine Soot Adhesion and Abruption Phenomena

2017-03-28
2017-01-0127
Among the emerging technologies in order to meet ever stringent emission and fuel consumption regulations, Exhaust Gas Recirculation (EGR) system is becoming one of the prerequisites particularly for diesel engines. Although EGR cooler is considered to be an effective measure for further performance enhancement, exhaust gas soot deposition may cause degradation of the cooling. To address this issue, the authors studied the visualization of the soot deposition and removal phenomena to understand its behavior. Based on thermophoresis theory, which indicates that the effect of thermophoresis depends on the temperature difference between the gas and the wall surface exposed to the gas, a visualization method using a heated glass window was developed. By using glass with the transparent conductive oxide: tin-doped indium oxide, temperature of the heated glass surface is raised.
Journal Article

Visualization and Analysis of LSPI Mechanism Caused by Oil Droplet, Particle and Deposit in Highly Boosted SI Combustion in Low Speed Range

2015-04-14
2015-01-0761
In this study, in order to clarify the mechanism of preignition occurrence in highly boosted SI engine at low speed and high load operating conditions, directphotography of preignition events and light induced fluorescence imaging of lubricant oil droplets during preignition cycles were applied. An endoscope was attached to the cylinder head of the modified production engine. Preigntion events were captured using high-speed video camera through the endoscope. As a result, several types of preignition sources could be found. Preignition caused by glowing particles and deposit fragments could be observed by directphotography. Luminous flame was observed around the piston crevice area during the exhaust stroke of preignition cycles.
Technical Paper

Two–Dimensional Imaging of Formaldehyde Formed During the Ignition Process of a Diesel Fuel Spray

2000-03-06
2000-01-0236
The time of, and location where ignition first occurs in a diesel fuel spray were investigated in a rapid compression machine (RCM) using the two–dimensional techniques of silicone oil particle scattering imaging (SSI), and the planar laser induced fluorescence (LIF) of formaldehyde. Formaldehyde has been hypothesized to be one of the stable intermediate species marking the start of oxidation reactions in a transient spray under compression ignition conditions. In this study, the LIF images of the formaldehyde formed in a diesel fuel spray during ignition process have been successfully obtained for the first time by exciting formaldehyde with the 3rd harmonic of the Nd:YAG laser. SSI images of the vaporizing spray, and the LIF images of formaldehyde were obtained together with the corresponding time record of combustion chamber pressures at initial ambient temperatures ranging from 580 K to 790 K.
Technical Paper

The Effects of Some Engine Variables on Measured Rates of Air Entrainment and Heat Release in a DI Diesel Engine

1980-02-01
800253
The rate of air entrainment into the flame and the rate of heat release are thermodynamically calculated in a DI diesel engine: A two-zone model is proposed which uses as input data three measured values of cylinder pressure, flame temperature, and injection rate. The correlations between both rates under various conditions make it clear that the combustion during early and main periods of diffusion combustion is mainly controlled by air entrainment into the flame. The effects of injection pressure, piston configuration, and swirl intensity on the air entrainment are also studied. And the extent of mixing in the flame is evaluated by the equivalence ratio in the flame which is also obtained by the same model. The trends of exhausted NO and soot concentrations well correlate with the equivalence ratios in the flame and measured flame temperatures under all conditions studied.
Technical Paper

The Effect of In-Cylinder Flow and Mixture Distributions on Combustion Characteristics in a HCCI Engine

2017-11-05
2017-32-0061
It has been widely known that thermal and fuel stratifications of in-cylinder mixture are effective to reduce in-cylinder pressure rise rate during high load HCCI operations. In order to optimize a combustion chamber design and combustion control strategy for HCCI engines with wide operational range, it is important to know quantitatively the influence of the temperature and fuel concentration distributions on ignition and heat release characteristics. At the same time, it is important to know the influence of in-cylinder flow and turbulence on the temperature and fuel concentration distributions. In this study, a numerical simulation of HCCI combustion were conducted to investigate the effects of the in-cylinder flow and turbulence, and the distributions of temperature on ignition and combustion characteristics in HCCI combustion.
Technical Paper

Stratification of Swirl Intensity in the Axial Direction for Control of Turbulence Generation During the Compression Stroke

1991-02-01
910261
Control of turbulence during the compression stroke is suggested by both theoretical calculations and experimental results obtained with an LDV measurement in a motored engine. The authors have found experimentally that when an axial distribution of swirl intensity exists, a large-scale annular vortex is formed inside the cylinder during the compression stroke and this vortex generates and transports turbulence energy. A numerical calculation is adopted to elucidate this phenomenon. Then, an axial stratification of swirl intensity is found to generate a large-scale annular vortex during the compression stroke by an interaction between the piston motion and the axial pressure gradient. The initial swirl profile is parametrically varied to assess its effect on the turbulence parameters. Among calculated results, turbulence energy is enhanced strongest when the swirl intensity is highest at the piston top surface and lowest at the bottom surface of the cylinder head.
Technical Paper

Simultaneous 2-D Imaging of OH Radicals and Soot in a Diesel Flame by Laser Sheet Techniques

1996-02-01
960834
The OH and soot in an unsteady flame, which was achieved in a rapid compression machine, were visualized simultaneously by the laser-induced fluorescence and laser-induced scattering techniques. The fuel mixture consisting of 90% paraffin hydrocarbon (reference fuel) and 10% polypropylene-glycol was used to reduce the optical attenuation caused by dense soot cloud. The simultaneous images of the fluorescence from OH and scattering from soot show that the soot and OH exist separately from each other in the leading portion of the spray flame, and the OH is formed earlier than the soot in the near field region of spray flame.
Technical Paper

Research and Development of a Direct Injection Stratified Charge Rotary Engine with a Pilot Flame Ignition System

2001-12-01
2001-01-1844
A Direct Injection Stratified Charge Rotary Engine ( DISC-RE ) with a pilot flame ignition system has been studied to find the possibility of simultaneous reductions of fuel consumption rate and HC exhaust gas emissions. Firstly, combustion characteristics in a model combustion chamber, which simulates the DISC-RE were examined from the viewpoints of calculation and experiment. The high speed photography and the indicated pressure analysis were experimentally performed while numerical calculations of the mixture formation and combustion processes were also carried out. As a result, it has been found that the combustion using the pilot flame ignition system is much activated and a better ignitability is attained under lean mixtures than using a spark ignition system. Secondly, a single rotor with 650 cc displacement DISC-RE was built as a prototype. Combustion characteristics and its performance were tested using a combustion analyzer.
Technical Paper

Rate of Heat Release and Its Prediction of a Diesel Flame in a Rapid Compression Machine

1984-09-01
841076
The rate of heat release of a free diesel flame was measured with a rapid compression machine which has a compression ratio of 14.7 and a combustion chamber with a diameter of 196 mm and a thickness of 40 mm. Basing on the experimental observations of the high speed photographs of the spray and flame, the authors proposed a phenomenological model for predicting the rate of heat release of the flame. The model consists of three basic models; air entrainment, mixing and combustion model. It was confirmed that the model could successively simulate the rate of heat release of a diesel flame in the quiescent chamber of the rapid compression machine.
Technical Paper

Quantitative Measurement of Fuel Vapor Concentration in an Unsteady Evaporating Spray via a 2-D Mie-Scattering Imaging Technique

1993-10-01
932653
The cross-sectional distribution of fuel vapor concentration in an evaporating spray was measured quantitatively by a new scattering imaging technique, silicone particle scattering imaging method, which was proposed in a previous paper[1]. When fuel containing silicone oil injected into a nitrogen environment at high temperature, the volatile base fuel in the droplets vaporized rapidly, leaving behind small droplets of silicone oil suspended in the vapor-gas mixture. The silicone oil droplets were illuminated by a thin laser sheet, and the scattered light was imaged by a CCD camera. The cross-sectional distribution of vapor concentration was estimated from the scattering image of the silicone oil droplets by Mie scattering theory. The results demonstrated clearly the inhomogeneity of the fuel vapor concentration. The distribution of vapor concentration was discontinuous, and islands of rich mixture with a scale of several millimeters existed in the center region of the spray.
Technical Paper

Quantitative Measurement of 2-D Fuel Vapor Concentration in a Transient Spray via Laser-Induced Fluorescence Technique

1994-10-01
941953
A new method to determine simultaneously the temperature and the fuel vapor concentration inside an evaporating spray was described by using a laser-induced fluorescence technique. A TMPD doped base fuel composed of C12H26: 22%, C13H28: 54% and C14H30: 30% was injected into the combustion chamber of a rapid compression machine which is filled with a high temperature and high pressure nitrogen. The laser sheet was used for incident light, which was reflected by a prism located inside the combustion chamber and propagated through the center of an evaporating spray. The laser induced fluorescence intensity was imaged by a high speed-gated intensifier from a direction perpendicular to the incident light. The results shows that mixtures with high equivalence ratio are observed in the central region, while low equivalence ratio mixtures are observed in the periphery of the spray. It is also observed that the temperature of richest mixture is 50 K as low as the surrounding gas temperature.
Technical Paper

Proposition of a Stratified Charge System by Using In-Cylinder Gas Motion

1995-10-01
952455
A new idea for controlling the in-cylinder mixture formation in SI engines is proposed. This concept was developed by applying the results of numerical calculations. Fuel that is directly injected into the cylinder is transferred toward the cylinder head to form a mixture stratification by using the in-cylinder gas motion that is generated by the interaction between the swirl and squish flows inside a combustion chamber. At first, the flow characteristics were measured in the whole in-cylinder space using an LDV system. Also, numerical calculations of the in-cylinder flow were made using measured data as the initial conditions. Secondly, the local equivalence ratio at several points inside the combustion chamber was measured by using a fast gas sampling device.
Technical Paper

Prediction of Spray Evaporation in Reciprocating Engines

1977-02-01
770413
A theoretical model for predicting the evaporation process of liquid fuel sprays in both diesel and S.I. stratified charge engines is presented: The injected liquid fuel is assumed to break up into droplets with a certain time delay which is determined through careful experiments on the heat absorption process of injected fuel in a high temperature, high pressure inert atmosphere. The evaporation, heat absorption, and motion of these droplets are computed, together with the change of gas conditions inside the spray, by solving a coupled system of equations made up of heat and mass balance between droplets and gas. The effects of such parameters as the surrounding gas conditions, fuel properties, and spray characteristics on evaporation are investigated by the model. Reference is also made to the application of a predicted result to the calculation of burning rate in a direct injection diesel engine.
Technical Paper

Photographic And Image Analysis Studies Of Diesel Spray And Flame With A Rapid Compression Machine And A D. I. Diesel Engine (Interpretation And Conceptual Image)

1984-01-01
845009
Some conceptual image of a diesel spray flame and its combustion promotion is shown based on the various interpretations of the enormous data obtained in our laboratory in these several years, on the flame temperature measurement by the two color method, the composition analysis by gas sampling, as well as the focus shadow photography, back illuminated photography and luminous photography by a high speed camera, on the diesel spray flame created in a large scale Rapid Compression Machine (diameter ϕ 200 mm thickness 40 mm) and a D-I engine (diameter (ϕ 95 mm)
Technical Paper

On the Air-Entrainment Characteristics of Diesel Sprays and Flames in a Quiescent Atmosphere

1994-10-01
941924
Air-entrainment characteristics of non-evaporating sprays and flames were measured by means of high-speed photography including ordinary shadowgraphy of sprays, back diffused light illumination photography and laser shadow photography of flames. Effects of injection pressure and nozzle orifice diameter on air-entrainment characteristics were investigated parametrically. The amount of air entrained into a flame was calculated by a two-zone thermodynamic model with data obtained from the photographs and the pressure measurement in the combustion chamber. The air-entrainment characteristics of flames were compared with those of the corresponding sprays. It showed that immediately after the start of ignition, the air entrainment into a flame increased more rapidly as compared with the corresponding spray and then, with the development of diffusion combustion, the air entrainment gradually approached that of the spray.
Technical Paper

Numerical and Experimental Analysis of Abnormal Combustion in a SI Gasoline Engine with a Re-Entrant Piston Bowl and Swirl Flow

2022-01-09
2022-32-0038
Some SI (spark-ignition) engines fueled with gasoline for industrial machineries are designed based on the conventional diesel engine in consideration of the compatibility with installation. Such diesel engine-based SI engines secure a combustion chamber by a piston bowl instead of a pent-roof combustion chamber widely applied for SI engines for automobiles. In the development of SI engines, because knocking deteriorates the power output and the thermal efficiency, it is essential to clarify causes of knocking and predict knocking events. However, there has been little research on knocking in diesel engine-based SI engines. The purpose of this study is to elucidate knocking phenomena in a gasoline engine with a re-entrant piston bowl and swirl flow numerically and experimentally. In-cylinder visualization and pressure analysis of knock onset cycles have been experimentally performed. Locations of autoignition have been predicted by 3D-CFD analysis with detailed chemical reactions.
Technical Paper

Numerical and Experimental Analyses of Mixture Formation Process Using a Fan-shaped DI Gasoline Spray: Examinations on Effects of Crosswind and Wall Impingement

2009-04-20
2009-01-1502
The analysis of spray characteristics is important to examine the combustion characteristics of DI (Direct Injection) gasoline engines because the fuel-air mixture formation is controlled by spray characteristics and in-cylinder gas motion. However, the mixture formation process has not been well clarified yet. In this study, the characteristics of a fan-shaped spray caused from a slit-type injector, such as the droplet size, its velocity and the droplet distribution were simultaneously measured on a 2D plane by using improved ILIDS (Interferometric Laser Imaging for Droplet Sizing) method. ILIDS method is an optical measurement technique using interference fringes by illuminating a transparent spherical particles with a coherent laser light. In the measurement of the wall-impinging spray, effects of the distance to the wall and the wall temperature on the spray characteristics were investigated.
Technical Paper

Numerical Simulation to Understand the Cause and Sequence of LSPI Phenomena and Suggestion of CaO Mechanism in Highly Boosted SI Combustion in Low Speed Range

2015-04-14
2015-01-0755
The authors investigated the reasons of how a preignition occurs in a highly boosted gasoline engine. Based on the authors' experimental results, theoretical investigations on the processes of how a particle of oil or solid comes out into the cylinder and how a preignition occurs from the particle. As a result, many factors, such as the in-cylinder temperature, the pressure, the equivalence ratio and the component of additives in the lubricating oil were found to affect the processes. Especially, CaCO3 included in an oil as an additive may be changed to CaO by heating during the expansion and exhaust strokes. Thereafter, CaO will be converted into CaCO3 again by absorbing CO2 during the intake and compression strokes. As this change is an exothermic reaction, the temperature of CaCO3 particle increases over 1000K of the chemical equilibrium temperature determined by the CO2 partial pressure.
Technical Paper

Numerical Simulation of Turbulent Mixing in a Transient Jet

1993-10-01
932657
To understand further the mixing process between the injected fuel and air in the combustion chamber of a diesel engine, the turbulent mixing process in a one-phase, two-dimensional transient jet was theoretically studied using the discrete vortex simulation. First, the simulation model was evaluated by comparisons between calculated and experimental data on two-dimensional turbulent jets. Second, the trajectories of the injected fluid elements marked with different colors were graphically demonstrated. Also the process of entrainment of the surrounding fluid into the jet was visually presented using colored tracers.
Technical Paper

Numerical Investigation of Multi-Stage HCCI Combustion with Small Chamber Inside Piston

2023-09-29
2023-32-0020
Homogeneous charge compression ignition (HCCI) combustion is promising for not only high thermal efficiency but also reducing nitrogen oxides (NOx) and PM simultaneously. However, the operational range of the HCCI combustion is limited because of some issues, such as poor control of ignition timing and knocking by the excessive rate of pressure rise. In this study, a new combustion system based on the HCCI combustion process is proposed based on the authors' previous experimental work. This combustion system has a divided combustion chamber of two parts, one is small and the other is large. The most significant feature is the small chamber inside the piston. At first, combustion takes place in the small chamber, and then the burned gas is ejected into the large chamber to ignite the mixture in the large chamber.
X