Refine Your Search

Topic

Author

Search Results

Technical Paper

Time-Resolved Measurements and Analysis of In-Cylinder Gases and Particulates in Compression-Ignition Engines

1996-05-01
961168
The extraction of small quantities of gas and particulates from diesel engine cylinders allows time-resolved gas and particulate analysis to be performed outside the engine during a short window of a few degrees crank angle at any stage of the engine cycle. The paper describes the design features and operation of a high-speed, intermittent sampling valve for extracting in-cylinder gases and particulates from diesel engines at any selected instant of the combustion process. Various sampling valve configurations are outlined. Detailed analysis of gas flow through the valve and the performance of the electromagnetic actuator and plunger are given in order to facilitate the design of the sampling valve. Finally, examples of the uses of the sampling valve in a direct-injection diesel engine are provided. These demonstrate how gaseous emissions such as NOx, uHC, CO2, and particulate emissions can be sampled at any part of the combustion process and analysed.
Technical Paper

The Upper-Load Extension of a Boosted Direct Injection Poppet Valve Two-Stroke Gasoline Engine

2016-10-17
2016-01-2339
Engine downsizing can effectively improve the fuel economy of spark ignition (SI) gasoline engines, but extreme downsizing is limited by knocking combustion and low-speed pre-ignition at higher loads. A 2-stroke SI engine can produce higher upper load compared to its naturally aspirated 4-stroke counterpart with the same displacement due to the double firing frequency at the same engine speed. To determine the potential of a downsized two-cylinder 2-stroke poppet valve SI gasoline engine with 0.7 L displacement in place of a naturally aspirated 1.6 L gasoline (NA4SG) engine, one-dimensional models for the 2-stroke gasoline engine with a single turbocharger and a two-stage supercharger-turbocharger boosting system were set up and validated by experimental results.
Journal Article

The Performance Characteristics of an Production Oriented Air Hybrid Powertrain

2010-04-12
2010-01-0821
In a previous paper [ 1 ], the authors have proposed a cost effective air hybrid concept based on a proprietary intake system and cam profile switching (CPS) system [ 2 ]. It was shown through engine simulations that the pneumatic hybrid operation could be achieved with about 15% regenerative efficiency. The proposed air hybrid operation can be achieved with proven technologies and engine components and hence it represents a cost-effective, reliable and quick deployable solution for low carbon vehicles. In this work, a four-cylinder 2 litre diesel engine has been modelled to operate on refined air hybrid engine configurations and the braking and motoring performance of each configuration have been studied. Both air hybrid systems can be constructed with production technologies and incur minimum changes to the existing engine design.
Technical Paper

The Influence of Intake Port and Pent-Roof Structures on Reversed Tumble Generation of a Poppet-Valved Two-Stroke Gasoline Engine

2014-04-01
2014-01-1130
In order to minimize short-circuiting of the intake charge in the poppet-valved 2-stroke engine, measures are taken to generate reversed tumble in the cylinder. In this study, five different types of intake ports and three types of pent-roof geometries were designed and analysed of their ability to generate and maintain reversed tumble flows by means of CFD simulation for their intake processes on a steady flow rig. Their flow characteristics were then assessed and compared to that of the vertical top-entry ports. Results show that the side-entry port designs can achieve comparatively high tumble intensity. The addition of flow deflectors inside the side-entry ports does not have much effect on the reversed tumble ratio. The top-entry ports have the highest flow coefficient among all the intake ports examined as well as producing strong reversed tumble. It is also found that the pent-roof at a wider angle helps to strengthen the tumble intensity due to increased air flow rate.
Technical Paper

The Dilution, Chemical, and Thermal Effects of Exhaust Gas Recirculation on Diesel Engine Emissions - Part 3: Effects of Water Vapour

1997-05-01
971659
Water vapour is a main constituent of exhaust gas recirculation (EGR) in diesel engines and its influence on combustion and emissions were investigated. The following effects of the water vapour were examined experimentally: the effect of replacing part of the inlet charge oxygen (dilution effect), the effect of the higher specific heat capacity of water vapour in comparison with that of oxygen it replaces (thermal effect), the effect of dissociation of water vapour (chemical effect), as well as the overall effect of water vapour on combustion and emissions. Water vapour was introduced into the inlet charge, progressively, so that up to 3 percent of the inlet charge mass was displaced. This was equivalent to the amount of water vapour contained in 52 percent by mass of EGR for the engine operating condition tested in this work.
Technical Paper

The Dilution, Chemical, and Thermal Effects of Exhaust Gas Recirculation on Diesel Engine Emissions - Part 2: Effects of Carbon Dioxide

1996-05-01
961167
This is the second of a series of papers on how exhaust gas recirculation (EGR) affects diesel engine combustion and emissions. It concentrates on the effects of carbon dioxide (CO2) which is a principal constituent of EGR. Results are presented from a number of tests during which the nitrogen or oxygen in the engine inlet air was progressively replaced by CO2 and/or inert gases, whilst the engine speed, fuelling rate, injection timing, inlet charge total mass rate and inlet charge temperature were kept constant. In one set of tests, some of the nitrogen in the inlet air was progressively replaced by a carefully controlled mixture of CO2 and argon. This ensured that the added gas mixture had equal specific heat capacity to that of the nitrogen being replaced. Thus, the effects of dissociated CO2 on combustion and emissions could be isolated and quantified (chemical effect).
Technical Paper

The Dilution, Chemical, and Thermal Effects of Exhaust Gas Recirculation on Diesel Engine Emissions - Part 1: Effect of Reducing Inlet Charge Oxygen

1996-05-01
961165
This is a first of a series of papers describing how the replacement of some of the inlet air with EGR modifies the diesel combustion process and thereby affects the exhaust emissions. This paper deals with only the reduction of oxygen in the inlet charge to the engine (dilution effect). The oxygen in the inlet charge to a direct injection diesel engine was progressively replaced by inert gases, whilst the engine speed, fuelling rate, injection timing, total mass and the specific heat capacity of the inlet charge were kept constant. The use of inert gases for oxygen replacement, rather than carbon dioxide (CO2) or water vapour normally found in EGR, ensured that the effects on combustion of dissociation of these species were excluded. In addition, the effects of oxygen replacement on ignition delay were isolated and quantified.
Technical Paper

Synergy between Boost and Valve Timings in a Highly Boosted Direct Injection Gasoline Engine Operating with Miller Cycle

2015-04-14
2015-01-1262
Gasoline engine downsizing has become a popular and effective approach to reduce CO2 emissions from passenger cars. This is typically achieved in the form of a boosted direct injection gasoline engine, which are typically equipped with variable valve timing (VVT) devices on the intake and/or exhaust valves. This paper describes the synergies between valve timings and boost based on experimental investigations in a single cylinder gasoline direct injection spark ignited (DISI) engine with variable cam phasing on both the intake and exhaust cams. Two cam profiles have been tested to realize Miller cycle and compared with the standard camshaft. One cam features a long opening duration and standard valve lift for Late Intake Valve Closing (LIVC) and the other cam has a short opening duration and low valve lift for Early Intake Valve Closing (EIVC).
Technical Paper

Study on the Characteristics of Different Intake Port Structures in Scavenging and Combustion Processes on a Two-Stroke Poppet Valve Diesel Engine

2020-04-14
2020-01-0486
Two-stroke engines have to face the problems of insufficient charge for short intake time and the loss of intake air caused by long valve overlap. In order to promote the power of a two-stroke poppet valve diesel engine, measures are taken to help optimize intake port structure. In this work, the scavenging and combustion processes of three common types of intake ports including horizontal intake port (HIP), combined swirl intake port (CSIP) and reversed tumble intake port (RTIP) were studied and their characteristics are summarized based on three-dimensional simulation. Results show that the RTIP has better performance in scavenging process for larger intake air trapped in the cylinder. Its scavenging efficiency reaches 84.7%, which is 1.7% higher than the HIP and the trapping ratio of the RTIP reaches 72.3% due to less short-circuiting loss, 11.2% higher than the HIP.
Technical Paper

Study on Methods of Coupling Numerical Simulation of Conjugate Heat Transfer and In-Cylinder Combustion Process in GDI Engine

2017-03-28
2017-01-0576
Wall temperature in GDI engine is influenced by both water jacket and gas heat source. In turn, wall temperature affects evaporation and mixing characteristics of impingement spray as well as combustion process and emissions. Therefore, in order to accurately simulate combustion process, accurate wall temperature is essential, which can be obtained by conjugate heat transfer (CHT) and piston heat transfer (PHT) models based on mapping combustion results. This CHT model considers temporal interaction between solid parts and cooling water. This paper presents an integrated methodology to reliably predict in-cylinder combustion process and temperature field of a 2.0L GDI engine which includes engine head/block/gasket and water jacket components. A two-way coupling numerical procedure on the basis of this integrated methodology is as follows.
Technical Paper

Study on Hydrodynamic Characteristics of Fuel Droplet Impact on Oil Film

2020-04-14
2020-01-1429
In order to understand the spray impinging the lubricant oil on the piston or cylinder wall in GDI engine, the Laser Induced Fluorescence (LIF) method was used to observe the phenomenon of the fuel droplets impact oil film and distinguish the fuel and oil during the impingement. The experimental results show that the hydrodynamic characteristics of impingement affected by the oil viscosity, droplets’ Weber number, oil film thickness. Crown formed after impingement. The morphology after impingement was categorized into: rings, stable crown, splash and prompt splash. Low oil film dynamic viscosity, high Weber number or thin oil film can facilitate splash. Splash droplets consist of fuel and oil, and the oil is the main component of splash droplets and crown. The empirical formula of critical We number (We) is fitted. High dimensionless oil film thickness or low oil film dynamic viscosity can increase the proportion of fuel in the crown.
Technical Paper

Study of Flame Speed and Knocking Combustion of Gasoline, Ethanol and Hydrous Ethanol (10% Water) at Different Air/Fuel Ratios with Port-Fuel Injection

2018-04-03
2018-01-0655
In this paper, an experimental study was performed to investigate characteristics of flame propagation and knocking combustion of hydrous (10% water content) and anhydrous ethanol at different air/fuel ratios in comparison to RON95 gasoline. Experiments were conducted in a full bore overhead optical access single cylinder port-fuel injection spark-ignition engine. High speed images of total chemiluminescence and OH* emission was recorded together with the in-cylinder pressure, from which the heat release data were derived. The results show that under the stoichiometric condition anhydrous ethanol and wet ethanol with 10% water (E90W10) generated higher IMEP with at an ignition timing slightly retarded from MBT than the gasoline fuel for a fixed throttle position. Under rich and stoichiometric conditions, the knock limited spark timing occurred at 35 CA BTDC whereas both ethanol and E90W10 were free from knocking combustion at the same operating condition.
Technical Paper

Studies of the Control of In-cylinder Inhomogeneities in a 4VVAS Gasoline Engine

2008-04-14
2008-01-0052
In this research, numerical simulation using Star-CD is performed to investigate the mixing process of a single-cylinder experimental gasoline engine equipped with 4VVAS (4 Variable Valve System). Different engine operating conditions are studied with respect to valve parameters, including EVC (Exhaust Valve Closing), IVO (Intake Valve Opening), and IVL (Intake Valve Lift). The definitions of RGF (Residual Gas Fraction)/temperature statistical distribution and inhomogeneity are proposed and quantified, on which the influences of the aforementioned valve parameters are analyzed. Results reveal that, the distribution of in-cylinder residuals varies with valve parameter combinations. Intake valve timing has a greater effect on the in-cylinder distribution and inhomogeneity of residuals than intake valve lift. Earlier IVO leads to lower RGF inhomogeneity around TDC.
Technical Paper

Simulating the Homogeneous Charge Compression Ignition Process Using a Detailed Kinetic Model for Dimethyl Ether (DME) and Methane Dual Fuel

2004-10-25
2004-01-2951
With a zero-dimensional detailed chemical kinetic model, a numerical study was carried out to investigate the chemical reaction phenomena encountered in the homogenous charge compression ignition process of dimethyl ether (DME) and methane dual fuel. The results show that the DME/methane dual fuel elementary reactions affect each other. The low temperature reaction (LTR) of DME is inhibited, the second molecular oxygen addition of DME is restrained, and β -scission plays a dominant role in DME oxidation. Hydrogen peroxide (H2O2) is controlled by DME oxidation and almost has no correlation with methane oxidation. The rich H2O2 concentration makes methane oxidation occurs at low initial temperature. Most of the formaldehyde (CH2O) is produced from H-abstraction of methoxy (CH3O) rather than from LTR of the DME. However, the heat release of methane oxidation promotes the hot flame reactions of DME which make the reactions with high activation energy occur.
Technical Paper

Research in the Effects of Intake Manifold Length and Chamber Shape on Performance for an Atkinson Cycle Engine

2016-04-05
2016-01-1086
In order to improve the fuel consumption and expand the range of low fuel consumption area of a 1.5L Atkinson cycle PFI engine, the effect of the intake manifold length and chamber shape on the engine performance is investigated by setting up a GT-power (1-D) and an AVL-Fire (3-D) computational model which are calibrated with experimental data. After this the new engine was transformed to the test bench to do the calibration experiment. The results demonstrate that the intake manifold case_1 (the length is 300mm, side intake form) matched with a new designed chamber improves combustion in cylinder with a range 1.6∼7.4g/(kW•h) reduced in fuel consumption of speed that has been studied; the case_3 (the length is 100mm, intermediate intake form) matched with the new designed chamber with a range 3.86∼7g/(kW•h) reduced in fuel consumption of speed that has been studied. Both case_1 and case_3 expand the range of low fuel consumption area significantly.
Technical Paper

Research and Development of Controlled Auto-Ignition (CAI) Combustion in a 4-Stroke Multi-Cylinder Gasoline Engine

2001-09-24
2001-01-3608
Controlled Auto-Ignition (CAI) combustion has been achieved in a production type 4-stroke multi-cylinder gasoline engine. The engine was based on a Ford 1.7L Zetec-SE 16V engine with a compression ratio of 10.3, using substantially standard components modified only in design dimensions to control the gas exchange process in order to significantly increase the trapped residuals. The engine was also equipped with Variable Cam Timing (VCT) on both the intake and exhaust camshafts. It was found that the largely increased trapped residuals alone were sufficient to achieve CAI in this engine and with VCT, a range of loads between 0.5 and 4 bar BMEP and engine speeds between 1000 and 3500 rpm were mapped for CAI fuel consumption and exhaust emissions. The measured CAI results were compared with those of Spark Ignition (SI) combustion in the same engine but with standard camshafts at the same speeds and loads.
Technical Paper

Progress in Diesel HCCI Combustion Within the European SPACE LIGHT Project

2004-06-08
2004-01-1904
The purpose of the European « SPACE LIGHT » (Whole SPACE combustion for LIGHT duty diesel vehicles) 3-year project launched in 2001 is to research and develop an innovative Homogeneous internal mixture Charged Compression Ignition (HCCI) for passenger cars diesel engine where the combustion process can take place simultaneously in the whole SPACE of the combustion chamber while providing almost no NOx and particulates emissions. This paper presents the whole project with the main R&D tasks necessary to comply with the industrial and technical objectives of the project. The research approach adopted is briefly described. It is then followed by a detailed description of the most recent progress achieved during the tasks recently undertaken. The methodology adopted starts from the research study of the in-cylinder combustion specifications necessary to achieve HCCI combustion from experimental single cylinder engines testing in premixed charged conditions.
Journal Article

Pneumatic Regenerative Engine Braking Technology for Buses and Commercial Vehicles

2011-09-13
2011-01-2176
In this paper, a novel cost-effective air hybrid powertrain concept for buses and commercial vehicles, Brunel Regenerative Engine Braking Device (RegenEBD) technology, is presented and its performance during the braking process is analysed using the Ricardo WAVE engine simulation programme. RegenEBD is designed to convert kinetic energy into pneumatic energy in the compressed air saved in an air tank. Its operation is achieved by using a production engine braking device and a proprietary intake system design. During the braking operation, the engine switches from the firing mode to the compressor mode by keeping the intake valves from fully closed throughout the four-strokes by installing the Variable Valve Exhaust Brake (VVEB) device on the intake valves. As a result, the induced air could be compressed through the opening gap of intake valves into the air tank through the modified intake system.
Technical Paper

Performance and Analysis of a 4-Stroke Multi-Cylinder Gasoline Engine with CAI Combustion

2002-03-04
2002-01-0420
Controlled Auto-Ignition (CAI) combustion was realised in a production type 4-stroke 4-cylinder gasoline engine without intake charge heating or increasing compression ratio. The CAI engine operation was achieved using substantially standard components modified only in camshafts to restrict the gas exchange process The engine could be operated with CAI combustion within a range of load (0.5 to 4 bar BMEP) and speed (1000 to 3500 rpm). Significant reductions in both specific fuel consumption and CO emissions were found. The reduction in NOx emission was more than 93% across the whole CAI range. Though unburned hydrocarbons were higher under the CAI engine operation. In order to evaluate the potential of the CAI combustion technology, the European NEDC driving cycle vehicle simulation was carried out for two identical vehicles powered by a SI engine and a CAI/SI hybrid engine, respectively.
Technical Paper

Parametric Study on CAI Combustion in a GDI Engine with an Air-Assisted Injector

2007-04-16
2007-01-0196
Controlled auto-ignition (CAI) combustion and engine performance and emission characteristics have been intensively investigated in a single-cylinder gasoline direct injection (GDI) engine with an air-assisted injector. The CAI combustion was obtained by residual gas trapping. This was achieved by using low-lift short-duration cams and early closing the exhaust valves. Effects of EVC (exhaust valve closure) and IVO (intake valve opening) timings, spark timing, injection timing, coolant temperature, compression ratio, valve lift and duration, on CAI combustion and emissions were investigated experimentally. The results show that the EVC timing, injection timing, compression ratio, valve lift and duration had significant influences on CAI combustion and emissions. Early EVC and injection timing, higher compression ratio and higher valve lift could enhance CAI combustion. IVO timing had minor effect on CAI combustion.
X