Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Validation of the Generalized RNG Turbulence Model and Its Application to Flow in a HSDI Diesel Engine

2012-04-16
2012-01-0140
A generalized re-normalization group (RNG) turbulence model based on the local "dimensionality" of the flow field is proposed. In this modeling approach the model coefficients C₁, C₂, and C₃ are all constructed as functions of flow strain rate. In order to further validate the proposed turbulence model, the generalized RNG closure model was applied to model the backward facing step flow (a classic test case for turbulence models). The results indicated that the modeling of C₂ in the generalized RNG closure model is reasonable, and furthermore, the predictions of the generalized RNG model were in better agreement with experimental data than the standard RNG turbulence model. As a second step, the performance of the generalized RNG closure was investigated for a complex engine flow.
Journal Article

Use of Low-Pressure Direct-Injection for Reactivity Controlled Compression Ignition (RCCI) Light-Duty Engine Operation

2013-04-08
2013-01-1605
Reactivity-controlled compression ignition (RCCI) has been shown to be capable of providing improved engine efficiencies coupled with the benefit of low emissions via in-cylinder fuel blending. Much of the previous body of work has studied the benefits of RCCI operation using high injection pressures (e.g., 500 bar or greater) with common rail injection (CRI) hardware. However, low-pressure fueling technology is capable of providing significant cost savings. Due to the broad market adoption of gasoline direct injection (GDI) fueling systems, a market-type prototype GDI injector was selected for this study. Single-cylinder light-duty engine experiments were undertaken to examine the performance and emissions characteristics of the RCCI combustion strategy with low-pressure GDI technology and compared against high injection pressure RCCI operation. Gasoline and diesel were used as the low-reactivity and high-reactivity fuels, respectively.
Technical Paper

Two-Point Spatial Velocity Correlations in the Near-Wall Region of a Reciprocating Internal Combustion Engine

2017-03-28
2017-01-0613
Developing a complete understanding of the structure and behavior of the near-wall region (NWR) in reciprocating, internal combustion (IC) engines and of its interaction with the core flow is needed to support the implementation of advanced combustion and engine operation strategies, as well as predictive computational models. The NWR in IC engines is fundamentally different from the canonical steady-state turbulent boundary layers (BL), whose structure, similarity and dynamics have been thoroughly documented in the technical literature. Motivated by this need, this paper presents results from the analysis of two-component velocity data measured with particle image velocimetry near the head of a single-cylinder, optical engine. The interaction between the NWR and the core flow was quantified via statistical moments and two-point velocity correlations, determined at multiple distances from the wall and piston positions.
Technical Paper

Two-Color Imaging of In-Cylinder Soot Concentration and Temperature in a Heavy-Duty DI Diesel Engine with Comparison to Multidimensional Modeling for Single and Split Injections

1998-02-23
980524
Two-Color imaging optics were developed and used to observe soot emission processes in a modern heavy-duty diesel engine. The engine was equipped with a common rail, electronically-controlled, high-pressure fuel injection system that is capable of up to four injection pulses per engine cycle. The engine was instrumented with an endoscope system for optical access for the combustion visualization. Multidimensional combustion and soot modeling results were used for comparisons to enhance the understanding and interpretation of the experimental data. Good agreement between computed and measured cylinder pressures, heat release and soot and NOx emissions was achieved. In addition, good qualitative agreement was found between in-cylinder soot concentration (KL) and temperature fields obtained from the endoscope images and those obtained from the multidimensional modeling.
Technical Paper

Two-Color Combustion Visualization of Single and Split Injections in a Single-Cylinder Heavy-Duty D.I. Diesel Engine Using an Endoscope-Based Imaging System

1999-03-01
1999-01-1112
An experimental study of luminous combustion in a modern diesel engine was performed to investigate the effect of injection parameters on NOX and soot formation via flame temperature and soot KL factor measurements. The two-color technique was applied to 2-D soot luminosity images and area-averaged soot radiation signals to obtain spatially and temporally resolved flame temperature and soot KL factor. The imaging system used for this study was based on a wide-angle endoscope that was mounted in the cylinder head and allowed different views of the combustion chamber. The experiments were carried out on a single-cylinder 2.4 liter D.I. diesel engine equipped with an electronically controlled common-rail injection system. Operating conditions were 1600 rpm and 75% load. The two-color results confirm that retarding the injection timing causes lower flame temperatures and NOX emissions but increased soot formation, independent of injection strategy.
Technical Paper

Turbulence Properties of High and Low Swirl In-Cylinder Flows

2002-10-21
2002-01-2841
In previous work, Reuss [1] studied the cycle-to-cycle variation in the large-scale velocity structures of high and low-swirl in-cylinder flows of an IC engine. The vector flow fields were obtained from PIV measurements in a two-valve, pancake-shaped, Transparent Combustion Chamber (TCC) engine. In this study, the Reynolds-decomposed turbulence properties such as kinetic energy, length scales, and dissipation rate were directly measured for the two cases. The results demonstrate that, at TDC compression, the low-swirl flow is dominated by turbulence at the largest scales, whereas the high-swirl flow has a considerably lower turbulence Reynolds number. The dissipation rate and length scale calculated from mixing-length theory greatly exceeded the dissipation computed from the 2-D velocity-gradients and integral-length scales computed from the autocorrelation, respectively.
Journal Article

Transient RCCI Operation in a Light-Duty Multi-Cylinder Engine

2013-09-08
2013-24-0050
Reactivity Controlled Compression Ignition (RCCI) is an engine combustion strategy that utilizes in-cylinder fuel blending to produce low NOx and PM emissions, while maintaining high thermal efficiency. Previous RCCI steady-state performance studies provided a fundamental understanding of the RCCI combustion process in steady-state, single-cylinder and multi-cylinder engine tests. The current study investigates RCCI and conventional diesel combustion (CDC) operation in a light-duty multi-cylinder engine over transient operating conditions. In this study, a high-bandwidth, transient-capable engine test cell was used and multi-cylinder engine RCCI combustion is compared to CDC over a step load change from 1 to 4 bar BMEP at 1,500 rev/min. The engine experiments consisted of in-cylinder fuel blending using port fuel-injection (PFI) of gasoline and early-cycle, direct-injection (DI) of ultra-low sulfur diesel (ULSD) for the RCCI tests and used the same ULSD for the CDC tests.
Journal Article

Three-Dimensional Three-Component Air Flow Visualization in a Steady-State Engine Flow Bench Using a Plenoptic Camera

2017-03-28
2017-01-0614
Plenoptic particle tracking velocimetry (PTV) shows great potential for three-dimensional, three-component (3D3C) flow measurement with a simple single-camera setup. It is therefore especially promising for applications in systems with limited optical access, such as internal combustion engines. The 3D visualization of a plenoptic imaging system is achieved by inserting a micro-lens array directly anterior to the camera sensor. The depth is calculated from reconstruction of the resulting multi-angle view sub-images. With the present study, we demonstrate the application of a plenoptic system for 3D3C PTV measurement of engine-like air flow in a steady-state engine flow bench. This system consists of a plenoptic camera and a dual-cavity pulsed laser. The accuracy of the plenoptic PTV system was assessed using a dot target moved by a known displacement between two PTV frames.
Technical Paper

Three-Dimensional Computations of Combustion in Premixed-Charge and Direct-Injected Two-Stroke Engines

1992-02-01
920425
Combustion and flow were calculated in a spark-ignited two-stroke crankcase-scavenged engine using a laminar and turbulent characteristic-time combustion submodel in the three-dimensional KIVA code. Both premixed-charge and fuel-injected cases were examined. A multi-cylinder engine simulation program was used to specify initial and boundary conditions for the computation of the scavenging process. A sensitivity study was conducted using the premixed-charge engine data. The influence of different port boundary conditions on the scavenging process was examined. At high delivery ratios, the results were insensitive to variations in the scavenging flow or residual fraction details. In this case, good agreement was obtained with the experimental data using an existing combustion submodel, previously validated in a four-stroke engine study.
Technical Paper

The Influence of Swirl Ratio on Turbulent Flow Structure in a Motored HSDI Diesel Engine - A Combined Experimental and Numerical Study

2004-03-08
2004-01-1678
Simultaneous two-component measurements of gas velocity and multi-dimensional numerical simulation are employed to characterize the evolution of the in-cylinder turbulent flow structure in a re-entrant bowl-in-piston engine under motored operation. The evolution of the mean flow field, turbulence energy, turbulent length scales, and the various terms contributing to the production of the turbulence energy are correlated and compared, with the objectives of clarifying the physical mechanisms and flow structures that dominate the turbulence production and of identifying the source of discrepancies between the measured and simulated turbulence fields. Additionally, the applicability of the linear turbulent stress modeling hypothesis employed in the k-ε model is assessed using the experimental mean flow gradients, turbulence energy, and length scales.
Journal Article

The Impact of a Non-Linear Turbulent Stress Relationship on Simulations of Flow and Combustion in an HSDI Diesel Engine

2008-04-14
2008-01-1363
In-cylinder flow and combustion processes simulated with the standard k-ε turbulence model and with an alternative model-employing a non-linear, quadratic equation for the turbulent stresses-are contrasted for both motored and fired engine operation at two loads. For motored operation, the differences observed in the predictions of mean flow development are small and do not emerge until expansion. Larger differences are found in the spatial distribution and magnitude of turbulent kinetic energy. The non-linear model generally predicts lower energy levels and larger turbulent time scales. With fuel injection and combustion, significant differences in flow structure and in the spatial distribution of soot are predicted by the two models. The models also predict considerably different combustion efficiencies and NOx emissions.
Technical Paper

The Evolution of Flow Structures and Turbulence in a Fired HSDI Diesel Engine

2001-09-24
2001-01-3501
In-cylinder fluid velocity is measured in an optically accessible, fired HSDI engine at idle. The velocity field is also calculated, including the full induction stroke, using multi-dimensional fluid dynamics and combustion simulation models. A detailed comparison between the measured and calculated velocities is performed to validate the computed results and to gain a physical understanding of the flow evolution. Motored measurements are also presented, to clarify the effects of the fuel injection process and combustion on the velocity field evolution. The calculated mean in-cylinder angular momentum (swirl ratio) and mean flow structures prior to injection agree well with the measurements. Modification of the mean flow by fuel injection and combustion is also well captured.
Technical Paper

The Effect of Swirl Ratio and Fuel Injection Parameters on CO Emission and Fuel Conversion Efficiency for High-Dilution, Low-Temperature Combustion in an Automotive Diesel Engine

2006-04-03
2006-01-0197
Engine-out CO emission and fuel conversion efficiency were measured in a highly-dilute, low-temperature diesel combustion regime over a swirl ratio range of 1.44-7.12 and a wide range of injection timing. At fixed injection timing, an optimal swirl ratio for minimum CO emission and fuel consumption was found. At fixed swirl ratio, CO emission and fuel consumption generally decreased as injection timing was advanced. Moreover, a sudden decrease in CO emission was observed at early injection timings. Multi-dimensional numerical simulations, pressure-based measurements of ignition delay and apparent heat release, estimates of peak flame temperature, imaging of natural combustion luminosity and spray/wall interactions, and Laser Doppler Velocimeter (LDV) measurements of in-cylinder turbulence levels are employed to clarify the sources of the observed behavior.
Technical Paper

The Development and Application of a Diesel Ignition and Combustion Model for Multidimensional Engine Simulation

1995-02-01
950278
An integrated numerical model has been developed for diesel engine computations based on the KIVA-II code. The model incorporates a modified RNG k-ε, turbulence model, a ‘wave’ breakup spray model, the Shell ignition model, the laminar-and-turbulent characteristic-time combustion model, a crevice flow model, a spray/wall impingement model that includes rebounding and breaking-up drops, and other improved submodels in the KIVA code. The model was validated and applied to model successfully different types of diesel engines under various operating conditions. These engines include a Caterpillar engine with different injection pressures at different injection timings, a small Tacom engine at different loads, and a Cummins engine modified by Sandia for optical experiments. Good levels of agreement in cylinder pressures and heat release rate data were obtained using the same computer model for all engine cases.
Technical Paper

Studying the Roles of Kinetics and Turbulence in the Simulation of Diesel Combustion by Means of an Extended Characteristic-Time-Model

1999-03-01
1999-01-1177
A study was performed that takes into account both turbulence and chemical kinetic effects in the numerical simulation of diesel engine combustion in order to better understand the importance of their respective roles at changing operating conditions. An approach was developed which combines the simplicity and low computational and storage requests of the laminar-and-turbulent characteristic-time model with a detailed combustion chemistry model based on well-known simplified mechanisms. Assuming appropriate simplifications such as steady state or equilibrium for most of the radicals and intermediate species, the kinetics of hydrocarbons can be described by means of three overall steps. This approach was integrated in the KIVA-II code. The concept was validated and applied to a single-cylinder, heavy-duty engine. The simulation covers a wide range of operating conditions.
Technical Paper

Study of Diesel Engine Size-Scaling Relationships Based on Turbulence and Chemistry Scales

2008-04-14
2008-01-0955
Engine design is a time consuming process in which many costly experimental tests are usually conducted. With increasing prediction ability of engine simulation tools, engine design aided by CFD software is being given more attention by both industry and academia. It is also of much interest to be able to use design information gained from an existing engine design of one size in the design of engines of other sizes to reduce design time and costs. Therefore it is important to study size-scaling relationships for engines over wide range of operating conditions. This paper presents CFD studies conducted for two production diesel engines - a light-duty GM-Fiat engine (0.5L displacement) and a heavy-duty Caterpillar engine (2.5L displacement). Previously developed scaling arguments, including an equal spray penetration scaling model and an extended, equal flame lift-off length scaling model were employed to explore the parametric scaling connections between the two engines.
Technical Paper

Spray Targeting to Minimize Soot and CO Formation in Premixed Charge Compression Ignition (PCCI) Combustion with a HSDI Diesel Engine

2006-04-03
2006-01-0918
The effect of spray targeting on exhaust emissions, especially soot and carbon monoxide (CO) formation, were investigated in a single-cylinder, high-speed, direct-injection (HSDI) diesel engine. The spray targeting was examined by sweeping the start-of-injection (SOI) timing with several nozzles which had different spray angles ranging from 50° to 154°. The tests were organized to monitor the emissions in Premixed Charge Compression Ignition (PCCI) combustion by introducing high levels of EGR (55%) with a relatively low compression ratio (16.0) and an open-crater type piston bowl. The study showed that there were optimum targeting spots on the piston bowl with respect to soot and CO formation, while nitric oxide (NOx) formation was not affected by the targeting. The soot and CO production were minimized when the spray was targeted at the edge of the piston bowl near the squish zone, regardless of the spray angle.
Technical Paper

Spatial Correlation and Length Scale Analysis of the Near-Wall Flow and Temperature Distribution of an Internal Combustion Engine

2020-04-14
2020-01-1106
Accurate predictions of in-cylinder heat transfer processes of internal combustion engines (ICEs) require a comprehensive understanding of the boundary layer development in the near-wall region (NWR). To add to the understanding of this NWR, this study uses experimental data of near-wall measurements collected in the transparent combustion chamber (TCC-III) engine via Particle Image Velocimetry (PIV) and toluene Planar Laser Induced Fluorescence (PLIF) thermometry. These near-wall flow and temperature distributions were compared with large-eddy simulations (LES) and 3-D conjugate heat transfer (CHT) modeling with a commercial CFD code (CONVERGE). The implementation of the conjugate heat transfer model enables capturing the variability in wall heat transfer as observed in the measurements.
Technical Paper

Simultaneous Mapping of the Distribution of Different Fuel Volatility Classes Using Tracer-LIF Tomography in an IC Engine

1998-10-19
982467
Various fluorescence tracers were assessed for their applicability for simultaneously measuring fuel distributions of different volatility classes. Tracers were chosen to show significantly different boiling behaviour representing three volatility classes of non-fluorescing multi-component fuels. Fluorescence properties of the markers were investigated using a heated static high-pressure cell with respect to emission behaviour, temperature and pressure dependence and quenching influences. A combination of ketonic and aromatic tracers appeared to be ideal for simultaneous imaging purposes since fluorescence is emitted in separate spectral regions with little overlap. Simultaneous measurements of the fuel distribution of two volatility classes were performed in a port fuel injected engine showing significant differences in the fuel distributions of low and mid boiling fractions in early stages of compression.
Technical Paper

Scaling Aspects of the Characteristic Time Combustion Model in the Simulation of Diesel Engines

1999-03-01
1999-01-1175
Combustion simulations utilizing the characteristic time combustion model have been performed for four DI diesel engines ranging in size from heavy-duty to large-bore designs. It has been found that the pre-factor to the turbulent characteristic time acts as a scaling parameter between the engines. This phenomenon is explained in terms of the non-equilibrium behavior of the turbulent time and length scales, as is encountered in the rapidly distorting, spray-induced flows of DI diesel engines. In fact, the equilibrium assumption between turbulence production and dissipation, which forms the basis for the employed k-ε-type turbulence models, does not hold in these situations. For such flows, the real turbulent dissipation time scale is locally proportional to the turbulent characteristic time scale which is determined by a typical eddy turnover time.
X