Refine Your Search

Topic

Author

Search Results

Technical Paper

Virtual Investigation of Real Fuels by Means of 3D-CFD Engine Simulations

2019-09-09
2019-24-0090
The reduction of both harmful emissions (CO, HC, NOx, etc.) and gases responsible for greenhouse effects (especially CO2) are mandatory aspects to be considered in the development process of any kind of propulsion concept. Focusing on ICEs, the main development topics are today not only the reduction of harmful emissions, increase of thermodynamic efficiency, etc. but also the decarbonization of fuels which offers the highest potential for the reduction of CO2 emissions. Accordingly, the development of future ICEs will be closely linked to the development of CO2 neutral fuels (e.g. biofuels and e-fuels) as they will be part of a common development process. This implies an increase in development complexity, which needs the support of engine simulations. In this work, the virtual modeling of real fuel behavior is addressed to improve current simulation capabilities in studying how a specific composition can affect the engine performance.
Technical Paper

Using a Phenomenological Simulation Approach for the Prediction of a Dual-Fuel Pilot Injection Combustion Process

2020-03-10
2020-01-5013
Development processes for modern combustion engines already make substantial use of more or less sophisticated simulation approaches. The enhancement of computational resources additionally allows the increasing use of simulation tools in terms of time-consuming three-dimensional CFD approaches. In particular, the preliminary estimation of feasible operating ranges and strategies requires a vast multitude of single simulations. Here, multi-zone simulation approaches incorporate the advantages of comparably short simulation durations. Nevertheless, the combination with more detailed sub-models allows these rather simple modeling approaches to offer considerable insight into relevant engine operation phenomena. In the context of combustion process development, this paper describes a phenomenological model approach for the prediction of operating point characteristics of a dual-fuel pilot injection combustion process.
Technical Paper

Turbocharging of a Two-cylinder Lean-Burn Natural Gas Engine with Uneven Firing Order

2014-04-01
2014-01-1652
At the Institute of Internal Combustion Engines of the Technische Universitaet Muenchen a drivetrain for urban and commuter traffic is under development. The concept is based on a lean-burn air-cooled two-cylinder natural gas engine which is combined with a hydraulic hybrid system. The engine is initially mechanically charged which results in an engine speed dependent torque. Turbocharging the natural gas fuelled engine derives increased engine torque especially at low engine speeds and exploits the potential of better knock resistance of natural gas compared to gasoline fuel. The paper presents a turbocharging concept for the two-cylinder engine at first. The firing order of 180/540°CA due to the crank shaft design and the lean-burn combustion are challenging restrictions to cope with. The consequences of the uneven firing order are investigated using 1D-simulation and the matching of the exhaust gas turbocharger is shown.
Technical Paper

The Potential of Gasoline Fueled Pre Chamber Ignition Combined with Elevated Compression Ratio

2020-04-14
2020-01-0279
Pre-chamber ignition is a method to simultaneously increase the thermal efficiency and to meet ever more stringent emission regulations at the same time. In this study, a single cylinder research engine is equipped with a tailored pre-chamber ignition system and operated at two different compression ratios, namely 10.5 and 14.2. While most studies on gasoline pre-chamber ignition employ port fuel injection, in this work, the main fuel quantity is introduced by side direct injection into the combustion chamber to fully exploit the knock mitigation effect. Different pre-chamber design variants are evaluated considering both unfueled and gasoline-fueled operation. As for the latter, the influence of the fuel amount supplied to the pre-chamber is discussed. Due to its principle, the pre-chamber ignition system increases combustion speeds by generating enhanced in-cylinder turbulence and multiple ignition sites. This property proves to be an effective measure to mitigate knocking effects.
Technical Paper

Simulative Evaluation of Various Thermodynamic Cycles and the Specification of Their System Components Regarding the Optimization of a Cogeneration Unit

2018-09-05
2018-01-5034
Given the increasing globalization and industrialization, the worldwide demand for energy continuously increases. In the context of modern Smart Grids, especially small and distributed power plants are a key factor. The present article essentially focuses on the investigation of different approaches for waste heat recovery (WHR) in small-scale CHP (combined heat and power) applications with an output range of approximately 20 kW. The engine integrated into the CHP system under investigation applies a lean-burn combustion process generally providing comparatively low exhaust gas temperatures, thus requiring a careful design that is crucial for efficient WHR. Therefore, this article presents the development and use of a simulation environment for the design and optimization of WHR in small-scale CHP applications.
Journal Article

Setting Up a Measuring Device to Determine the Friction of the Piston Assembly

2011-04-12
2011-01-0227
This SAE Technical Paper gives a summary of the essential findings in the development and operation of a test engine dedicated to the measuring of the friction between the piston group and the liner. Firstly the fundamental demands on the high-precision and close to real engine operation friction measuring are laid out. Subsequently the basic engine, the measuring system based on the floating liner method including a gas balance device, as well as the implemented measuring technique are specified. Major influencing variables on the friction of the piston assembly and its interference variables are also summarized. Extensive information about the systematic and strategies for the test engine's operation startup are given in acknowledgement of influencing and interference variables. This strategy reduces the developmental and startup process of an engine dedicated to the measuring of piston group friction.
Technical Paper

Real-Time Measurement of the Piston Ring Gap Positions and Their Effect on Exhaust Engine Oil Emission

2018-05-05
2018-01-5006
Measurement techniques for piston ring rotation, engine oil emission and blow by have been implemented on a single-cylinder petrol engine. A novel method of analysis allows continuous and fast real-time identification of the piston ring rotation of the two compression rings, while the mass-spectrometric analysis of the exhaust gas delivers the cylinder oil emission instantly and with a high temporal resolution. Only minor modifications to the piston rings were made for the insertion of the γ-emitters, the rings rotate freely around the circumference of the piston. The idea of this setup is that through online observation at the test bench, instant feedback of the measured variables is available, making it possible to purposefully select and compare measurement points. The high time resolution of the measurement methods enables the analysis of dynamic effects. In this article, the measurement setup and evaluation method is described.
Journal Article

Potential Analysis of a DMC/MeFo Mixture in a DISI Single and Multi-Cylinder Light Vehicle Gasoline Engine

2021-04-06
2021-01-0561
In this study a mixture of dimethyl carbonate (DMC) and methyl formate (MeFo) was used as a synthetic gasoline replacement. These synthetic fuels offer CO2-neutral mobility if the fuels are produced in a closed CO2-cycle and they reduce harmful emissions like particulates and NOX. For base potential investigations, a single-cylinder research engine (SCE) was used. An in-depth analysis of real driving cycles in a series 4-cylinder engine (4CE) confirmed the high potential for emission reduction as well as efficiency benefits. Beside the benefit of lower exhaust emissions, especially NOX and particle number (PN) emissions, some additional potential was observed in the SCE. During a start of injection (SOI) variation it could be detected that a late SOI of DMC/MeFo has less influence on combustion stability and ignitability. With this widened range for the SOI the engine application can be improved for example by catalyst heating or stratified mode.
Technical Paper

Piston Design Optimization for a Two-Cylinder Lean-Burn Natural Gas Engine - 3D-CFD-Simulation and Test Bed Measurements

2014-04-01
2014-01-1326
The development of today's drivetrains focusses on the reduction of vehicles' CO2-emissions. Therefore, a drivetrain for urban and commuter traffic is under development at the Institute of Internal Combustion Engines. The concept is based on a lean-burn air cooled two-cylinder natural gas engine, which is combined with a hydraulic hybrid system. On the one hand, lean-burn combustion leads to low nitrogen oxides emissions and high thermal efficiency. On the other hand, there are several challenges concerning inflammability, combustion stability and combustion duration. An approach to optimize the combustion process is the design of the piston bowl. The paper presents the engine concept at first. Afterwards, a description of design parameters for pistons of natural gas engines and a technical overview of piston bowls is given. Subsequent to the analysis of the different piston bowls, a new design approach is presented.
Technical Paper

Optimization of the Mixture Formation for Combined Injection Strategies in High-Performance SI-Engines

2015-09-06
2015-24-2476
Alongside with the severe restrictions according to technical regulations of the corresponding racing series (air and/or fuel mass flow), the optimization of the mixture formation in SI-race engines is one of the most demanding challenges with respect to engine performance. Bearing in mind its impact on the ignition behavior and the following combustion, the physical processes during mixture formation play a vital role not only in respect of the engine's efficiency, fuel consumption, and exhaust gas emissions but also on engine performance. Furthermore, abnormal combustion phenomena such as engine knock may be enhanced by insufficient mixture formation. This can presumably be explained by the strong influence of the spatial distribution of the air/fuel-ratio on the inflammability of the mixture as well as the local velocity of the turbulent flame front.
Journal Article

Optimal Injection Strategies to Compensate for Injector Aging in Common Rail Fuel Systems

2018-04-03
2018-01-1160
Aging effects such as coking or erosive damage that occur in fuel injection nozzles are known to deteriorate the engine performance. This article proposes an optimization method to compensate for injector aging and to control the combustion behavior over engine lifetime by adapting the injection strategy. First, a control-oriented combustion model is presented, which takes the condition of the injection nozzle into account. In combination with a simulation model of the entire fuel injection system from a previous study, the model is capable of predicting the heat release rate (HRR) at different working conditions. Measurements with a single-cylinder diesel engine were performed, using injectors with modified and aged nozzles, to validate the proposed combustion model and particularly to analyze the influence of injector aging. Using the simulation model, optimal injection strategies were obtained by applying a line search optimization scheme to recover a reference HRR trajectory.
Technical Paper

Optical Investigations of an Oxygenated Alternative Fuel in a Single Cylinder DISI Light Vehicle Gasoline Engine

2021-04-06
2021-01-0557
In this study, a fully optically accessible single-cylinder research engine is the basis for the visualization and generation of extensive knowledge about the in-cylinder processes of mixture formation, ignition and combustion of oxygenated synthetic fuels. Previous measurements in an all-metal engine showed promising results by using a mixture of dimethyl carbonate and methyl formate as a fuel substitute in a DISI-engine. Lower THC and NOx emissions were observed along with a low PN-value, implying low-soot combustion. The flame luminosity transmitted via an optical piston was split in the optical path to simultaneously record the natural flame luminosity with an RGB high-speed camera. The second channel consisted of OH*-chemiluminescence recording, isolated by a bandpass filter via an intensified monochrome high-speed camera.
Technical Paper

Numerical Simulation of the Gas Flow through the Piston Ring Pack of an Internal Combustion Engine

2015-04-14
2015-01-1302
Developing piston assemblies for internal combustion engines faces the conflicting priorities of blow-by, friction, oil consumption and wear. Solving this conflict consists in finding a minimum for all these parameters. This optimization can only be successful if all the effects involved are understood properly. In this paper only blow-by and its associated flow paths for a diesel engine in part load operating mode are part of a detailed numerical investigation. A comparison of the possibilities to do a CFD analysis of this problem should show why the way of modeling described here has been picked. Further, the determination of the complex geometry, which results in a challenging set of calculations, is described. Besides the constraints for temperature and pressure, a meshing method for the creation of a dynamic mesh that is capable of describing the movement of all three rings of the piston ring pack simultaneously is also explained.
Technical Paper

Nitrogen Oxide Reduction Potentials Using Dimethyl Ether and Oxymethylene Ether in a Heavy-Duty Diesel Engine

2020-10-01
2020-01-5084
The synthetic fuels dimethyl ether (DME) and polyoxymethylene dimethylether (POMDME or OME) are promising oxygenated fuels to meet the rising challenges of air pollution control, CO2-neutrality, and sustainability. The sootless combustion and high ignitability of DME and OME represent ideal properties for an application in diesel engines. However, recent investigations of oxygenates reported an increase of nanoparticles, which are known to have fatal effects on human’s health. Besides nanoparticles, ongoing discussions about future emission legislation focus on a drastic reduction of NOx. For this reason, the present work investigates different measures to reduce NOx emissions using DME/OME and a paraffinic diesel fuel (PDF) as reference. Different rail pressures, exhaust gas recirculation (EGR) rates, and injection timings are evaluated, considering the effectivity on NOx reduction and the impact on other emissions, especially on nanoparticles.
Technical Paper

Neat Oxymethylene Ethers: Combustion Performance and Emissions of OME2, OME3, OME4 and OME5 in a Single-Cylinder Diesel Engine

2020-04-14
2020-01-0805
Diesel engines are arguably the superior device in the ground transportation sector in terms of efficiency and reliability, but suffer from inferior emission performance due to the diffusive nature of diesel combustion. Great research efforts gradually reduced nitrogen oxide (NOX) and particulate matter (PM) emissions, but the PM-NOX trade-off remained to be a problem of major concern and was believed to be inevitable for a long time. In the process of engine development, the modification of fuel properties has lately gained great attention. In particular, the oxygenate fuel oxymethylene ether (OME) has proven potential to not only drastically reduce emissions, but possibly resolve the formerly inevitable trade-off completely.
Technical Paper

Multiobjective Metamodel-Based Design Optimization—A Review and Classification Approach Using the Example of Engine Development

2023-05-15
2023-01-5026
To cope with increasing, challenging requirements and shorter development cycles, more complex, often nonlinear, systems with high interactions have to be optimized in many fields of research, such as the energy sector. As this often goes beyond the classical parameter studies-based approach, systematic optimization approaches offer a key solution. In the context of the development of energy converters, like engines, such techniques are applied to enhance efficiency and enable optimal use of energy. This review provides a comprehensive overview of the field of optimization approaches, more precisely referred to as Metamodel-Based Design Optimization (MBDO). The MBDO approaches essentially comprise three main modules: the Design of Experiment (DoE), the Response Surface Modeling (RSM), and the Multiobjective Optimization (MoO), in varying compositions.
Technical Paper

Methodology for Piston Ring Oil Accumulation and Oil Film Separation

2022-03-30
2022-01-5023
Investigating the oil transport mechanisms of a combustion engine is essential to decrease engine losses and optimize overall performance. As explained in [1] the amount of oil at predefined positions can be investigated by mixing the engine oil with a specific dye. Therefore, the technology of laser-induced fluorescence (LIF) is used. Fiber optics are assembled flush to the cylinder wall and give the possibility of inducing the dye locally by means of a laser. The emitted light intensity correlates with the amount of oil between the cylinder wall and piston ring. The oil film thickness of the piston ring running surface can therefore be determined for each crank angle (CA). However, the emission signal measured does not always correlate to the complete barrel shape of the piston ring.
Technical Paper

Measuring and Simulating Friction between Piston Pin and Connecting Rod on a Tribometer Test Bench to Define Locally Resolved Friction Coefficients

2016-04-05
2016-01-0490
Measuring and simulating the contact between piston pin and connecting rod (conrod) is very complex. The pin can rotate freely in the conrod as well as in the piston. Further, there is no defined oil supply with a constant pressure as it is for example in main bearings. A tribometer test bench was adapted to measure friction between pin and conrod. The system is loaded with a constant force and oil supply is realized as defined deficient lubrication. During one part of the schedule, the rotational speed is defined as ramp to measure friction coefficient over speed, in another part the speed was pivoted from positive to negative speed within less than 500 milliseconds. With this measurement method, the different friction coefficients between radial slider and pivot bearings could be quantified. The measurements were conducted for four different pin-coatings.
Technical Paper

Layout and Optimization of a Piston Ring-pack for AUDI V6 SI-engine

2012-09-10
2012-01-1623
The use of modern simulation tools in the engine product development process is explained using the layout of a piston and its piston ring-pack of AUDI V6 SI-engine as example. Based on the requirements for piston rings in a SI-engine the possible trade-offs are explained. A base layout for a ring-pack for the specific engine is presented. Further the validity of the simulation model is rated as the simulation output is compared to actual dynamometer measurements of the blow-by map of the engine. Additionally a test setup is presented, which measures piston ring movement and the pressures between the rings and in the ring grooves. Also these measurement results are compared to the simulation. Using DOE (design of experiments) on the base layout potentials for optimization are shown and applied. To identify the positive effects in the engine pistons with piston rings are fabricated in accordance with the DOE recommendations.
Technical Paper

Investigation of an Innovative Combustion Process for High-Performance Engines and Its Impact on Emissions

2019-01-15
2019-01-0039
Over the past years, the question as to what may be the powertrain of the future has become ever more apparent. Aiming to improve upon a given technology, the internal combustion engine still offers a number of development paths in order to maintain its position in public and private mobility. In this study, an innovative combustion process is investigated with the goal to further approximate the ideal Otto cycle. Thus far, similar approaches such as Homogeneous Charge Compression Ignition (HCCI) shared the same objective yet were unable to be operated under high load conditions. Highly increased control efforts and excessive mechanical stress on the components are but a few examples of the drawbacks associated with HCCI. The approach employed in this work is the so-called Spark Assisted Compression Ignition (SACI) in combination with a pre-chamber spark plug, enabling short combustion durations even at high dilution levels.
X