Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Variability of Hybrid III Clearance Dimensions within the FMVSS 208 and NCAP Vehicle Test Fleets and the Effects of Clearance Dimensions on Dummy Impact Responses

1995-11-01
952710
Locations of key body segments of Hybrid III dummies used in FMVSS 208 compliance tests and NCAP tests were measured and subjected to statistical analysis. Mean clearance dimensions and their standard deviations for selected body segments of driver and passenger occupants with respect to selected vehicle surfaces were determined for several classes of vehicles. These occupant locations were then investigated for correlation with impact responses measured in crash tests and by using a three dimensional human-dummy mathematical model in comparable settings. Based on these data, the importance of some of the clearance dimensions between the dummy and the vehicle surfaces was determined. The study also compares observed Hybrid III dummy positions within selected vehicles with real world occupant positions reported in published literature.
Technical Paper

VEHICLE-TO-VEHICLE FULL FRONTAL CRASH OPTIMIZATION USING A CAE-BASED METHODOLOGY

2003-05-19
2003-06-0153
This paper describes a CAE-based methodology used to identity major factors influencing vehicle structural performance and crash energy management in full-frontal vehicle-to-vehicle collisions. Finite element models of an “average” SUV and an “average” full-size passenger vehicle were used in this study. The determining factors of vehicle compatibility in multi-vehicle collisions are relative mass, relative stiffness and relative geometry. Four parameters of the average SUV, mass, fore rail length, fore rail thickness, and fore rail height were selected as design variables. A uniformly spaced Optimal Latin Hypercube sampling technique was employed to probe the design space of these variables using thirteen simulation runs. Dash intrusions in the passenger vehicle and the absorbed collision energy in both vehicles were selected as response variables.
Technical Paper

Three-Year-Old Child Out-Of-Position Side Airbag Studies

1999-10-10
99SC03
A series of twenty-nine tests was completed by conducting static deployment of side airbag systems to an out-of-position Hybrid III three-year-old dummy. Mock-ups (bucks) of vehicle occupant compartments were constructed. The dummy was placed in one of four possible positions for both door- and seat-mounted side airbag systems. When data from each type of position test were combined for the various injury parameters it was noted that the head injury criteria (HIC) were maximized for head and neck tests, and the chest injury parameters were maximized for the chest tests. For the neck injury parameters, however, all of the test positions produced high values for at least one of the parameters. The study concluded the following. Static out-of- position child dummy side airbag testing is one possible method to evaluate the potential for injury for worst-case scenarios. The outcome of these tests are sensitive to preposition and various measurements should be made to reproduce the tests.
Technical Paper

Thoracic Trauma Assessment Formulations for Restrained Drivers in Simulated Frontal Impacts

1994-11-01
942206
Sixty-three simulated frontal impacts using cadaveric specimens were performed to examine and quantify the performance of various contemporary automotive restraint systems. Test specimens were instrumented with accelerometers and chest bands to characterize their mechanical responses during the impact. The resulting thoracic injury severity was determined using detailed autopsy and was classified using the Abbreviated Injury Scale. The ability of various mechanical parameters and combinations of parameters to assess the observed injury severities was examined and resulted in the observation that belt restraint systems generally had higher injury rates than air bag restraint systems for the same level of mechanical responses. To provide better injury evaluations from observed mechanical parameters without prior knowledge of what restraint system was being used, a dichotomous process was developed.
Technical Paper

Thoracic Response of Belted PMHS, the Hybrid III, and the THOR-NT Mid-Sized Male Surrogates in Low-Speed, Frontal Crashes

2006-11-06
2006-22-0009
Injury to the thorax is the predominant cause of fatalities in crash-involved automobile occupants over the age of 65, and many elderly-occupant automobile fatalities occur in crashes below compliance or consumer information test speeds. As the average age of the automotive population increases, thoracic injury prevention in lower severity crashes will play an increasingly important role in automobile safety. This study presents the results of a series of sled tests to investigate the thoracic deformation, kinematic, and injury responses of belted post-mortem human surrogates (PMHS, average age 44 years) and frontal anthropomorphic test devices (ATDs) in low-speed frontal crashes. Nine 29 km/h (three PMHS, three Hybrid III 50th% male ATD, three THOR-NT ATD) and three 38 km/h (one PMHS, two Hybrid III) frontal sled tests were performed to simulate an occupant seated in the right front passenger seat of a mid-sized sedan restrained with a standard (not force-limited) 3-point seatbelt.
Technical Paper

Thoracic Injury Prediction via Digital Convolution Theory

1981-10-01
811010
A dynamic characterization of the human thorax, in the form of a digital impulsive response signature, has been obtained which links the acceleration response of the struck side with the far side of the thorax under side impact conditions. This dynamic characterization was obtained by a unique combination of digital convolution theory, least squares approximation techniques, and a digital set of cadaver impact data. It has proven itself accurate in predicting the maximum relative acceleration, velocity and displacement between the left and the right lateral aspects of the thorax for a variety of impact conditions including lateral pendulum impacts, lateral rigid walls impacts at 15 and 20 mph and lateral impacts into padded walls at 20 mph.
Technical Paper

Theoretical Evaluation of the Requirements of the 1999 Advanced Airbag SNPRM – Part One: Design Space Constraint Analysis

2001-03-05
2001-01-0165
In the 1999 Supplemental Notice for Proposed Rulemaking (SNPRM) for Advanced Airbags, the National Highway Traffic Safety Administration (NHTSA) sought comments on the maximum speed at which the high-speed, unbelted occupant test suite will be conducted, i.e., 48 kph vs. 40 kph. To help address this question, an analysis of constraints was performed via extensive mathematical modeling of a theoretical restraint system. First, math models (correlated with several existing physical tests) were used to predict the occupant responses associated with 336 different theoretical dual-stage driver airbag designs subjected to six specific Regulated and non-Regulated tests.
Technical Paper

The Position of the United States Delegation to the ISO Working Group 6 on the Use of HIC in the Automotive Environment

1985-06-01
851246
A review and analysis of existing cadaver head impact data has been conducted in this paper. The association of the Head Injury Criterion with experimental cadaver skull fracture and brain damage has been investigated, and risk curves of HIC versus skull fracture and brain damage have been developed. Limitation of the search for the maximum HIC duration to 15ms has been recommended for the proper use of HIC in the automotive crash environment.
Technical Paper

The Influence of Superficial Soft Tissues and Restraint Condition on Thoracic Skeletal Injury Prediction

2001-11-01
2001-22-0008
The purpose of this study is to evaluate the hard tissue injury -predictive value of various thoracic injury criteria when the restraint conditions are varied. Ten right-front passenger human cadaver sled tests are presented, all of which were performed at 48 km/h with nominally identical sled deceleration pulses. Restraint conditions evaluated are 1) force-limiting belt and depowered airbag (4 tests), 2) non-depowered airbag with no torso belt (3 tests), and 3) standard belt and depowered airbag (3 tests). Externally measured chest compression is shown to correspond well with the pre sence of hard tissue injury, regardless of restraint condition, and rib fracture onset is found to occur at approximately 25% chest compression. Peak acceleration and the average spinal acceleration measured at the first and eighth or ninth thoracic vertebrae are shown to be unrelated to the presence of injury, though clear variations in peaks and time histories among restraint conditions can be seen.
Technical Paper

The Field Relevance of NHTSA's Oblique Research Moving Deformable Barrier Tests

2014-11-10
2014-22-0007
A small overlap frontal crash test has been recently introduced by the Insurance Institute for Highway Safety in its frontal rating scheme. Another small overlap frontal crash test is under development by the National Highway Traffic Safety Administration (NHTSA). Whereas the IIHS test is conducted against a fixed rigid barrier, the NHTSA test is conducted with a moving deformable barrier that overlaps 35% of the vehicle being tested and the angle between the longitudinal axis of the barrier and the longitudinal axis of the test vehicle is 15 degrees. The field relevance of the IIHS test has been the subject of a paper by Prasad et al. (2014). The current study is aimed at examining the field relevance of the NHTSA test.
Technical Paper

The Effects of Skull Thickness Variations on Human Head Dynamic Impact Responses

2001-11-01
2001-22-0018
Variations in human skull thickness affecting human head dynamic impact responses were studied by finite element modeling techniques, experimental measurements, and histology examinations. The aims of the study were to better understand the influences of skull thickness variations on human head dynamic impact responses and the injury mechanisms of human head during direct impact. The thicknesses of the frontal bone of seven human cadaver skulls were measured using ultrasonic technology. These measurements were compared with previous experimental data. Histology of the skull was recorded and examined. The measured data were analyzed and then served as a reference to vary the skull thickness of a previously published three-dimensional finite element human head model to create four models with different skull thickness. The skull thicknesses modeled are 4.6 mm, 5.98 mm, 7.68 mm, and 9.61 mm.
Technical Paper

The Effects of Axial Preload and Dorsiflexion on the Tolerance of the Ankle/Subtalar Joint to Dynamic Inversion and Eversion

2002-11-11
2002-22-0013
Forced inversion or eversion of the foot is considered a common mechanism of ankle injury in vehicle crashes. The objective of this study was to model empirically the injury tolerance of the human ankle/subtalar joint to dynamic inversion and eversion under three different loading conditions: neutral flexion with no axial preload, neutral flexion with 2 kN axial preload, and 30° of dorsiflexion with 2 kN axial preload. 44 tests were conducted on cadaveric lower limbs, with injury occurring in 30 specimens. Common injuries included malleolar fractures, osteochondral fractures of the talus, fractures of the lateral process of the talus, and collateral ligament tears, depending on the loading configuration. The time of injury was determined either by the peak ankle moment or by a sudden drop in ankle moment that was accompanied by a burst of acoustic emission. Characteristic moment-angle curves to injury were generated for each loading configuration.
Technical Paper

THE EFFECT OF ACTIVE MUSCLE TENSION ON THE AXIAL INJURY TOLERANCE OF THE HUMAN FOOT/ANKLE COMPLEX

2001-06-04
2001-06-0074
Axial loading of the foot/ankle complex is an important injury mechanism in vehicular trauma that is responsible for severe injuries such as calcaneal and tibia pilon fractures. Axial loading may be applied to the leg externally, by the toepan and/or pedals, as well as internally, by active muscle tension applied through the Achilles tendon during pre-impact bracing. In order to evaluate the effect of active muscle tension on the injury tolerance of the foot/ankle complex, blunt axial impact tests were performed on 44 isolated lower legs with and without experimentally simulated Achilles tension. The primary fracture mode was calcaneal fracture in both groups, but tibia pilon fractures occurred more frequently with the addition of Achilles tension. Acoustic emission demonstrated that fracture initiated at the time of peak local axial force.
Technical Paper

Stiff versus Yielding Seats: Analysis of Matched Rear Impact Tests

2007-04-16
2007-01-0708
The objective of this study was to analyze available anthropomorphic test device (ATD) responses from KARCO rear impact tests and to evaluate an injury predictive model based on crash severity and occupant weight presented by Saczalski et al. (2004). The KARCO tests were carried out with various seat designs. Biomechanical responses were evaluated in speed ranges of 7-12, 13-17, 18-23 and 24-34 mph. For this analysis, all tests with matching yielding and stiff seats and matching occupant size and weight were analyzed for cases without 2nd row occupant interaction. Overall, the test data shows that conventional yielding seats provide a high degree of safety for small to large adult occupants in rear crashes; this data is also consistent with good field performance as found in NASS-CDS. Saczalski et al.'s (2004) predictive model of occupant injury is not correct as there are numerous cases from NASS-CDS that show no or minor injury in the region where serious injury is predicted.
Technical Paper

Side Impact Regulatory Trends, Crash Environment and Injury Risk in the USA

2015-11-09
2015-22-0004
Light duty vehicles in the US are designed to meet and exceed regulatory standards, self-imposed industry agreements and safety rating tests conducted by NHTSA and IIHS. The evolution of side impact regulation in the US from 1973 to 2015 is discussed in the paper along with two key industry agreements in 2003 affecting design of restraint systems and structures for side impact protection. A combination of all the above influences shows that vehicles in the US are being designed to more demanding and comprehensive requirements than in any other region of the world. The crash environment in the US related to side impacts was defined based on data in the nationally representative crash database NASS. Crash environment factors, including the distribution of cars, light trucks and vans (LTV’s), and medium-to-heavy vehicles (MHV’s) in the fleet, and the frequency of their interactions with one another in side impacts, were considered.
Technical Paper

Side Impact Modeling using Quasi-Static Crush Data

1991-02-01
910601
This paper describes the development of a three-dimensional lumped-mass structure and dummy model to study barrier-to-car side impacts. The test procedures utilized to develop model input data are also described. The model results are compared to crash test results from a series of six barrier-to-car crash tests. Sensitivity analysis using the validated model show the necessity to account for dynamic structural rate effects when using quasi-statically measured vehicle crush data.
Technical Paper

Side Impact - The Biofidelity of NHTSA's Proposed ATD and Efficacy of TTI

1986-10-27
861877
A number of tests conducted under the sponsorship of the FAT were reported in papers at two previous Stapp Conferences and an Experimental Safety Vehicle Conference. These tests featured human cadavers and three different Anthropomorphic Test Devices (ATD) designed for use in lateral impacts. Test subjects were placed in Opel car bodies and impacted laterally by CCMC moving deformable barriers. In the previous papers, the reported responses of the human cadavers had wide variability and none of the ATD's studied featured good biofidelity. In this effort, a reexamination of the available data was undertaken and the process and results of applying different analysis techniques to the cadaver data, which resulted in significantly reduced scatter and variability, are discussed. Comparisons of the impact responses of the cadavers and the NHTSA developed Side Impact Dummy are also made.
Technical Paper

Role of Electronics in Automotive Safety

2000-11-01
2000-01-C086
The past, current and future role of electronics in reducing accidents, crash severity and crash notification is discussed. A holistic approach that ties pre-crash, crash and post-crash factors in enhancing automotive safety is examined and the growing role of electronics in affecting the three factors is discussed. Electronic technology has already entered the automotive safety arena, and its utilization in the future is expected to grow rapidly towards the goal of safer roadway environment.
Technical Paper

Response of the Eurosid-1 Thorax to Lateral Impact

1999-03-01
1999-01-0709
The Eurosid-1 dummy was subjected to a series of lateral and oblique pendulum impacts to study the anomalous “flat-top” thorax deflection versus time-histories observed in full-scale vehicle tests. The standard Eurosid-1, as well as two different modified versions of the dummy, were impacted at 6 different angles from -15 to +20 degrees (0 degrees is pure lateral) in the horizontal plane. The flat-top deflections were observed in the tests with the standard Eurosid-1, while one of the modified versions reduced the flat-top considerably. Full scale vehicle tests with the standard and modified Eurosid-1 suggest similar reductions. A second series of tests was conducted on the modified Eurosid-1 to investigate the effect of door surface friction on the shoulder rotation and the chest deflection. The data suggested that increasing the friction on the door surface impeded shoulder rotation and ultimately reduced the chest deflection in the Eurosid-1.
Technical Paper

Response and Tolerance of the Human Forearm to Impact Loading

1998-11-02
983149
With the widespread use of supplemental restraint systems (airbags), occasional rare injuries have occurred because of the force associated with these systems upon deployment. Recent case studies have demonstrated forearm fractures associated with airbag deployment. The present study was conducted to determine the tolerance of the human forearm under a dynamic bending mode. A total of 30 human cadaver forearm specimens were tested using three-point bending protocol to failure at 3.3 m/s and 7.6 m/s velocities. Results indicated significantly (p < 0.01) greater biomechanical parameters associated with males compared to females. The bending tolerance of the human forearm, however, was found to be most highly correlated to bone mineral density, bone area, and forearm mass. Thus, any occupant with lower bone mineral density and lower forearm geometry/mass is at higher risk. The mean failure bending moment for all specimens was 94 Nm.
X