Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

1D Engine Simulation Approach for Optimizing Engine and Exhaust Aftertreatment Thermal Management for Passenger Car Diesel Engines by Means of Variable Valve Train (VVT) Applications

2018-04-03
2018-01-0163
Using a holistic 1D engine simulation approach for the modelling of full-transient engine operation, allows analyzing future engine concepts, including its exhaust gas aftertreatment technology, early in the development process. Thus, this approach enables the investigation of both important fields - the thermodynamic engine process and the aftertreatment system, together with their interaction in a single simulation environment. Regarding the aftertreatment system, the kinetic reaction behavior of state-of-the-art and advanced components, such as Diesel Oxidation Catalysts (DOC) or Selective Catalytic Reduction Soot Filters (SCRF), is being modelled. Furthermore, the authors present the use of the 1D engine and exhaust gas aftertreatment model on use cases of variable valve train (VVT) applications on passenger car (PC) diesel engines.
Technical Paper

A New CFD Approach for Assessment of Swirl Flow Pattern in HSDI Diesel Engines

2010-09-28
2010-32-0037
The fulfillment of the aggravated demands on future small-size High-Speed Direct Injection (HSDI) Diesel engines requires next to the optimization of the injection system and the combustion chamber also the generation of an optimal in-cylinder swirl charge motion. To evaluate different port concepts for modern HSDI Diesel engines, usually quantities as the in-cylinder swirl ratio and the flow coefficient are determined, which are measured on a steady-state flow test bench. It has been shown that different valve lift strategies nominally lead to similar swirl levels. However, significant differences in combustion behavior and engine-out emissions give rise to the assumption that local differences in the in-cylinder flow structure caused by different valve lift strategies have noticeable impact. In this study an additional criterion, the homogeneity of the swirl flow, is introduced and a new approach for a quantitative assessment of swirl flow pattern is presented.
Technical Paper

Acoustics of Hybrid Vehicles

2010-06-09
2010-01-1402
The technology used in hybrid vehicle concepts is significantly different from conventional vehicle technology with consequences also for the noise and vibration behavior. In conventional vehicles, certain noise phenomena are masked by the engine noise. In situations where the combustion engine is turned off in hybrid vehicle concepts, these noise components can become dominant and annoying. In hybrid concepts, the driving condition is often decoupled from the operation state of the combustion engine, which leads to unusual and unexpected acoustical behavior. New acoustic phenomena such as magnetic noise due to recuperation occur, caused by new components and driving conditions. The analysis of this recuperation noise by means of interior noise simulation shows, that it is not only induced by the powertrain radiation but also by the noise path via the powertrain mounts. The additional degrees of freedom of the hybrid drive train can also be used to improve the vibrational behavior.
Journal Article

An Experimental Investigation of Dual-Fuel Combustion in a Light Duty Diesel Engine by In-Cylinder Blending of Ethanol and Diesel

2015-09-01
2015-01-1801
This study investigated dual-fuel operation with a light duty Diesel engine over a wide engine load range. Ethanol was hereby injected into the intake duct, while Diesel was injected directly into the cylinder. At low loads, high ethanol shares are critical in terms of combustion stability and emissions of unburnt hydrocarbons. As the load increases, the rates of heat release become problematic with regard to noise and mechanical stress. At higher loads, an advanced injection of Diesel was found to be beneficial in terms of combustion noise and emissions. For all tests, engine-out NOx emissions were kept within the EU-6.1 limit.
Technical Paper

Analysis of Cyclic Fluctuations of Charge Motion and Mixture Formation in a DISI Engine in Stratified Operation

2007-04-16
2007-01-1412
Engine processes are subject to cyclic fluctuations, which a have direct effect on the operating and emission behavior of the engine. The fluctuations in direct injection gasoline engines are induced and superimposed by the flow and the injection. In stratified operation they can cause serious operating problems, such as misfiring. The current state of knowledge on the formation and causes of cyclic fluctuations is rather limited, which can be attributed to the complex nature of flow instabilities. The current investigation analyzes the cyclic fluctuations of the in-cylinder charge motion and the mixture formation in a direct injection gasoline engine using laser-optical diagnostics and numerical 3D-calculation. Optical measurement techniques and pressure indication are used to measure flow, mixture formation, and combustion processes of the individual cycles.
Technical Paper

Analysis of Drivability Influence on Tailpipe Emissions in Early Stages of a Vehicle Development Program by Means of Engine-in-the-Loop Test Benches

2020-04-14
2020-01-0373
Due to increasing environmental awareness, standards for pollutant and CO2 emissions are getting stricter in most markets around the world. In important markets such as Europe, also the emissions during real road driving, so called “Real Driving Emissions” (RDE), are now part of the type approval process for passenger cars. In addition to the proceeding hybridization and electrification of vehicles, the complexity and degrees of freedom of conventional powertrains with internal combustion engines (ICE) are also continuing to increase in order to comply with stricter exhaust emission standards. Besides the different requirements placed on vehicle emissions, the drivability capabilities of passenger vehicles desired by customers, are essentially important and vary between markets.
Journal Article

Analysis of the Emission Conversion Performance of Gasoline Particulate Filters Over Lifetime

2019-09-09
2019-24-0156
Gasoline particulate filters (GPF) recently entered the market, and are already regarded a state-of-the-art solution for gasoline exhaust aftertreatment systems to enable EU6d-TEMP fulfilment and beyond. Especially for coated GPF applications, the prognosis of the emission conversion performance over lifetime poses an ambitious challenge, which significantly influences future catalyst diagnosis calibrations. The paper presents key-findings for the different GPF application variants. In the first part, experimental GPF ash loading results are presented. Ash accumulates as thin wall layers and short plugs, but does not penetrate into the wall. However, it suppresses deep bed filtration of soot, initially decreasing the soot-loaded backpressure. For the emission calibration, the non-linear backpressure development complicates the soot load monitoring, eventually leading to compromises between high safety against soot overloading and a low number of active regenerations.
Technical Paper

Analysis of the Particle Size Distribution in the Cylinder of a Common Rail DI Diesel Engine During Combustion and Expansion

2000-06-19
2000-01-1999
In the recent years diesel engine developers and manufacturers achieved a great progress in reducing the most important diesel engine pollutants, NOX and particulates. But nevertheless big efforts in diesel engine development are necessary to meet with the more stringent future emission regulations. To improve the knowledge about particle formation and emission an insight in the cylinder is necessary. By using the fast gas sampling technique samples from the cylinder were taken as a function of crank angle and analyzed regarding the soot particle size distribution and the particle mass. The particle size distribution was measured by a conventional SMPS. Under steady state conditions the influence of aromatic and oxygen content in the fuel on in-cylinder particle size distribution and particle mass inside a modern 4V-CR-DI-diesel-engine were determined. After injection and ignition, mainly small soot particles were formed which grow and in the later combustion phase coagulate.
Technical Paper

Applying Representative Interactive Flamelets (RIF) with Special Emphasis on Pollutant Formation to Simulate a DI Diesel Engine with Roof-Shaped Combustion Chamber and Tumble Charge Motion

2007-04-16
2007-01-0167
Combustion and pollutant formation in a new recently introduced Common-Rail DI Diesel engine concept with roof-shaped combustion chamber and tumble charge motion are numerically investigated using the Representative Interactive Flamelet concept (RIF). A reference case with a cup shaped piston bowl for full load operating conditions is considered in detail. In addition to the reference case, three more cases are investigated with a variation of start of injection (SOI). A surrogate fuel consisting of n-decane (70% liquid volume fraction) and α-methylnaphthalene (30% liquid volume fraction) is used in the simulation. The underlying complete reaction mechanism comprises 506 elementary reactions and 118 chemical species. Special emphasis is put on pollutant formation, in particular on the formation of NOx, where a new technique based on a three-dimensional transport equation within the flamelet framework is applied.
Journal Article

Assessment of the Full Thermodynamic Potential of C8-Oxygenates for Clean Diesel Combustion

2017-09-04
2017-24-0118
Within the Cluster of Excellence “Tailor-Made Fuels from Biomass” (TMFB) at the RWTH Aachen University, two novel biogenic fuels, namely 1-octanol and its isomer dibutyl ether (DBE), were identified and extensively analyzed in respect of their suitability for combustion in a Diesel engine. Both biofuels feature very different properties, especially regarding their ignitability. In previous works of the research cluster, promising synthesis routes with excellent yields for both fuels were found, using lignocellulosic biomass as source material. Both fuels were investigated as pure components in optical and thermodynamic single cylinder engines (SCE). For 1-octanol at lower part load, almost no soot emission could be measured, while with DBE the soot emissions were only about a quarter of that with conventional Diesel fuel. At high part load (2400 min-1, 14.8 bar IMEP), the soot reduction of 1-octanol was more than 50% and for DBE more than 80 % respectively.
Technical Paper

Balancing of Engine Oil Components in a DI Diesel Engine with Exhaust Gas Aftertreatment

2007-07-23
2007-01-1923
The influence of oil related emissions became more important in the past due to reduced engine-out emissions of combustion engines. Additionally the efficiency of exhaust gas after treatment components is influenced by oil derived components. A balancing of relevant engine oil components (Ca, Mg, Zn, P, S, Mo, B, Fe, Al, Cu) is presented in this paper. The oil components deposited in the combustion chamber, in the exhaust system as well as in the aftertreatment devices were determined and quantified. Therefore a completely cleaned DI Diesel engine with oxidation catalyst, Diesel particulate filter (DPF) and NOx adsorber catalyst (LNT) was operated in different operating conditions for 500 h in a development test cell. The operation included lean/rich cycling for NOx trap regeneration. After finishing the 500 h test procedure the engine was completely disassembled and all deposits were analyzed.
Technical Paper

Borderline Design of Crankshafts Based on Hybrid Simulation Technology

2009-06-15
2009-01-1918
This paper introduces different modeling approaches of crankshafts, compares the refinement levels and discusses the difference between the results of the crankshaft durability calculation methodologies. A V6 crankshaft is considered for the comparison of the refinement levels depending on the deviation between the signals such as main bearing forces and deflection angle. Although a good correlation is observed between the results in low speed range, the deviation is evident through the mid to high speed ranges. The deviation amplitude differs depending on the signal being observed and model being used. An inline 4 crankshaft is considered for the comparison of the durability results. The analysis results show that the durability potential is underestimated with a classical crankshaft calculation approach which leads to a limitation of maximum speed of 5500 rpm.
Technical Paper

Catalyst Aging Method for Future Emissions Standard Requirements

2010-04-12
2010-01-1272
This paper describes an alternative catalyst aging process using a hot gas test stand for thermal aging. The solution presented is characterized by a burner technology that is combined with a combustion enhancement, which allows stoichiometric and rich operating conditions to simulate engine exhaust gases. The resulting efficiency was increased and the operation limits were broadened, compared to combustion engines that are typically used for catalyst aging. The primary modification that enabled this achievement was the recirculation of exhaust gas downstream from catalyst back to the burner. The burner allows the running simplified dynamic durability cycles, which are the standard bench cycle that is defined by the legislation as alternative aging procedure and the fuel shut-off simulation cycle ZDAKW. The hot gas test stand approach has been compared to the conventional engine test bench method.
Technical Paper

Characterization of Oxygenated-Fuel Combustion by Quantitative Multiscalar SRS/LIF Measurements in a Diesel-Like Jet

2018-09-28
2018-01-5037
Due to experimental challenges, combustion of diesel-like jets has rarely been characterized by laser-based quantitative multiscalar measurements. In this work, recently developed laser diagnostics for combustion temperature and the concentrations of CO, O2, and NO are applied to a diesel-like jet, using a highly oxygenated fuel. The diagnostic is based on spontaneous Raman scattering (SRS) and laser-induced fluorescence (LIF) methods. Line imaging yields multiscalar profiles across the jet cross section. Measurements turn out to be particularly accurate, because near-stoichiometric combustion occurs in the central region of the jet. Thereby, experimental cross-influences by light attenuation and interfering emissions are greatly reduced compared to the combustion of conventional, sooting diesel fuel jets. This is achieved by fuel oxygenation and enhanced premixing.
Journal Article

Coking Phenomena in Nozzle Orifices of Dl-Diesel Engines

2009-04-20
2009-01-0837
Within a public founded project test cell investigations were undertaken to identify parameters which predominantly influence the development of critical deposits in injection nozzles. A medium-duty diesel engine was operated in two different coking cycles with a zinc-free lubricant. One of the cycles is dominated by rated power, while the second includes a wide area of the operation range. During the experiments the temperatures at the nozzle tip, the geometries of the nozzle orifice and fuel properties were varied. For a detailed analysis of the deposits methods of electron microscopy were deployed. In the course of the project optical access to all areas in the nozzle was achieved. The experiments were evaluated by means of the monitoring of power output and fuel flow at rated power. The usage of a SEM (scanning electron microscope) and a TEM (transmission electron microscope) revealed images of the deposits with a magnification of up to 160 000.
Technical Paper

Combined Particulate Matter and NOx Aftertreatment Systems for Stringent Emission Standards

2007-04-16
2007-01-1128
The HSDI Diesel engine contributes substantially to the decrease of fleet fuel consumption thus to the reduction of CO2 emissions. This results in the rising market acceptance which is supported by desirable driving performance as well as greatly improved NVH behavior. In addition to the above mentioned requirements on driving performance, fuel economy and NVH behavior, continuously increasing demands on emissions performance have to be met. From today's view the Diesel particulate trap presents a safe technology to achieve the required reduction of the particle emission of more than 95%. However, according to today's knowledge a further, substantial NOx engine-out emission reduction for the Diesel engine is counteracts with the other goal of reduced fuel consumption. To comply with current and future emission standards, Diesel engines will require DeNOx technologies.
Technical Paper

Compressor Expander Units for Fuel Cell Systems

2000-03-06
2000-01-0380
In this paper different compressor/expander concepts including mechanical superchargers, turbochargers and two-stage charging concepts are analysed with regard to their suitability for fuel cell applications. Special attention is focused on system designs which use the energy of the tail gases for driving the compressor. The net efficiencies of different system concepts at full load were calculated with a simulation model, based on Matlab/Simulink‘ and show, that with a single stage turbocharger in combination with a tail gas burner good efficiencies and high power densities can be obtained at a pressure level of more than 2.5 bar.
Journal Article

Control of the Diesel Combustion Process via Advanced Closed Loop Combustion Control and a Flexible Injection Rate Shaping Tool

2009-09-13
2009-24-0114
The presented paper deals with the set-up and performance of a newly developed control system as well as with achieved engine results. This control system is able to control the entire cylinder pressure trace by using a flexible rate shaping injector and iterative learning control (ILC). Standard thermodynamic cycles, like isobaric and Seiliger cycles, and a newly suggested class of cycles are generated and analyzed on a single cylinder engine. With this control system an extremely flexible tool for optimization of combustion processes is available to exploit the full potential of injection rate- shaping on diesel engines.
Journal Article

Cylinder Pressure Based Fuel Path Control for Non-Conventional Combustion Modes

2015-09-06
2015-24-2508
Model-based control strategies along with an adapted calibration process become more important in the overall vehicle development process. The main drivers for this development trend are increasing numbers of vehicle variants and more complex engine hardware, which is required to fulfill the more and more stringent emission legislation and fuel consumption norms. Upcoming fundamental changes in the homologation process with EU 6c, covering an extended range of different operational and ambient conditions, are suspected to intensify this trend. One main reason for the increased calibration effort is the use of various complex aftertreatment technologies amongst different vehicle applications, requiring numerous combustion modes. The different combustion modes range from heating strategies for active Diesel Particulate Filter (DPF) regeneration or early SCR light-off and rich combustion modes to purge the NOx storage catalyst (NSC) up to partially premixed combustion modes.
Journal Article

Drivetrain Energy Distribution and Losses from Fuel to Wheel

2013-11-20
2013-01-9118
Depending on a vehicles drive cycle, an improvement of the overall drivetrain efficiency does not necessarily have to go along with an improvement of its mileage. In here the ratio of energy to overcome rolling resistance, aerodynamic drag, acceleration and energy wasted directly in wheel brakes is responsible for potentially differing trends. A detailed knowledge of energy flows, sources and sinks makes up a substantial step into optimizing any drive train. Most fuel energy leaves the drivetrain via exhaust pipes. Next to usable mechanical energy, a big amount is spent to heat up the system directly or to overcome drive train friction, which is converted into heat to warm up the system additionally. An in depth quantification of the most important energy flows for an upper middle-sized class gasoline powered drive train is given as results of warm-up cycle simulations.
X