Refine Your Search

Topic

null

Affiliation

Search Results

Technical Paper

Visualization Experiment in a Transparent Engine With Pure and Mixed Normal Paraffin Fuels

2004-06-08
2004-01-2018
In the previous study design of two-component normal paraffin fuel was attempted considering the components and blending ratio. Only the thermodynamic analysis of combustion and analysis of emission characteristics were performed to evaluate the design performance. In this study mixture formation behavior and combustion phenomena of pure and mixed n-paraffin fuels were investigated by direct visualization in an AVL engine with bottom view piston. The experiments included laser-illuminated high-speed photography of the fuel injection phase and combustion phase to investigate physical differences. The results obtained for the proposed fuels are compared with the results of conventional diesel fuel. It was found that the two component normal paraffin fuels with similar thermo physical properties have very similar spray development pattern but evaporation rates are different.
Technical Paper

Trapping Performance of Fine Particles from a Diesel Engine by Various DPFs with Different Surface Structures

2004-03-08
2004-01-0598
The regulation of particulate matter (PM) from diesel engines is coming to be very stringent at present. The usage of diesel particulate filter (DPF) is now under consideration in many heavy-duty diesel vehicle manufacturers to reduce PM emission from a diesel engine. The possibility that very fine particles may pass through DPF is suggested. The understanding of fine particles emission behaviors and the countermeasure of reducing particle emissions from DPF will come to be important in near future. The behavior of particle size distribution after DPF has not been studied enough yet. In this study, fine particles generated by a diesel engine are introduced to honeycomb type and SiC (Silicon Carbite) fiber type DPFs and the collection performances of fine particles by various DPFs with different surface structures have been examined.
Technical Paper

Thermal Conditioning of Exhaust Gas: Potential for Stabilizing Diesel Nano-Particles

2005-04-11
2005-01-0187
Conditioning of diluted exhaust gas by Thermo-Conditioner prior to measurement has been proposed by the GRPE/PMP Research Council of the United Nation in order to achieve stability in nano-particle measurement. In this study the effect of thermo-conditioner on the thermo-physical behavior of nano-particle under different conditions have been clarified. Stability in measurement was also attempted depending on the characteristics of nano-particles. Quality of the raw exhaust gas, the dilution ratio and temperature, and the thermal conditioning temperature were considered as the main parameters. Exhaust gas from a medium duty DI diesel engine was used for analysis. Scanning Mobility Particle Sizer was used for measuring the concentration of nano-particles. It was concluded that the concentration of nuclei-mode particles within the size range of 15∼30 nm are significantly influenced by the thermal conditioning temperature.
Technical Paper

The Performance of a Diesel Engine for Light Duty Truck Using a Jerk Type In-Line DME Injection System

2004-06-08
2004-01-1862
Over the last few years much interest has been shown in Dimethyl Ether (DME) as a new fuel for diesel cycle engines. DME combines the advantages of a high cetane number with soot-free combustion, making it eminently suitable for compression engines. According, however, to past engine test results, the engine output of a DME engine lacking compatibility as a DME injection system, is low in comparison with a diesel engine. Required is development of a DME injection system conforming to DME properties. The purpose of this work is to investigate the feasibility of DME application for a conventional jerk-type in-line injection system that has the actual result of use of a comparatively low lubricity fuel such as methanol.
Technical Paper

The Cold Flow Performance and the Combustion Characteristics with Ethanol Blended Biodiesel Fuel

2005-10-24
2005-01-3707
The purpose of this study is to improve low-temperature flow-properties of biodiesel fuels (BDF) by blending with ethanol and to analyze the combustion characteristics in a diesel engine fueled with BDF/ethanol blended fuel. Because ethanol has a lower solidifying temperature, higher oxygen content, lower cetane number, and higher volatility than BDF, ethanol blending would have a large effect on cold flow performance, mixture formation, ignition, combustion, and exhaust emissions. The engine experiments in the study were performed with a diesel engine and blends of BDF and ethanol at different blending ratios. The cold flow performance of the blended fuels was evaluated by determining the fuel cloud point. The experimental results show that the ethanol blending lowers the cloud point of the blended fuel and significantly reduces smoke emissions from the engine without deteriorating other emissions or thermal efficiency.
Journal Article

Summary and Progress of the Hydrogen ICE Truck Development Project

2009-06-15
2009-01-1922
A development project for a hydrogen internal combustion engine (ICE) system for trucks supporting Japanese freightage has been promoted as a candidate for use in future vehicles that meet ultra-low emission and anti-global warming targets. This project aims to develop a hydrogen ICE truck that can handle the same freight as existing trucks. The core development technologies for this project are a direct-injection (DI) hydrogen ICE system and a liquid hydrogen tank system which has a liquid hydrogen pump built-in. In the first phase of the project, efforts were made to develop the DI hydrogen ICE system. Over the past three years, the following results have been obtained: A high-pressure hydrogen gas direct injector developed for this project was applied to a single-cylinder hydrogen ICE and the indicated mean effective pressure (IMEP) corresponding to a power output of 147 kW in a 6-cylinder hydrogen ICE was confirmed.
Technical Paper

Study of the Effect of Boiling Point on Combustion and PM Emissions in a Compression Ignition Engine Using Two-Component n-Paraffin Fuels

2002-03-04
2002-01-0871
Fuel composition is investigated as a parameter influencing fuel/air mixing of direct injected fuel and the subsequent consequences for particulate emissions. Presumably, enhanced mixing prior to ignition results in a larger portion of fuel burning as a premixture and a smaller portion of diffusion burning around fuel-rich regions. This would potentially lower particulate emissions without overly compromising hydrocarbon emissions or high load operation. Using mixtures of n-paraffin fuels, particulate emissions were measured and the results were compared with in-cylinder visualization of the injection process and two-color method calculations of flame temperature. In general, lower boiling point fuels exhibited higher flame temperatures, less visible flame, and lower particulate emissions.
Technical Paper

Study of NOx Emissions Reduction Strategy for a Naturally Aspirated 4-Cylinder Direct Injection Hydrogen ICE

2010-10-25
2010-01-2163
Hydrogen engines are required to provide high thermal efficiency and low nitrogen oxide (NOX) emissions. There are many possible combinations of injection timing, ignition timing, lambda and EGR rate that can be used in a direct-injection system for achieving such performance. In this study, NOX emissions of natural aspirated 4 cylinders engine with management strategies involving the injection timing, ignition timing, lambda and the EGR rate were evaluated under a Japanese JE05 emissions test cycle. Finally, the paper projects the potential of direct injection hydrogen engine for obtaining high output power and attaining low NOX emissions of 0.7 g/kWh under the emission test cycle.
Journal Article

Study of DME Diesel Engine for Low NOx and CO2 Emission and Development of DME Trucks for Commercial Use

2011-08-30
2011-01-1961
Study of DME diesel engines was conducted to improve fuel consumption and emissions of its. Additionally, DME trucks were built for the promotion and the road tests of these trucks were executed on EFV21 project. In this paper, results of diesel engine tests and DME truck driving tests are presented. As for DME diesel engines, the performance of a DME turbocharged diesel engine with LPL-EGR was evaluated and the influence of the compression ratio was also explored. As for DME trucks, a 100,000km road test was conducted on a DME light duty truck. After the road test, the engine was disassembled for investigation. Furthermore, two DME medium duty trucks have been developed and are now the undergoing practical road testing in each area of two transportation companies in Japan.
Technical Paper

Research and Development Program of the Next-generation Environmentally Friendly Vehicles(EFVs) in Japan

2004-03-08
2004-01-0644
The increase in number of automobiles due to its convenience brought serious increases in environmental load. The rate of attainment of environmental standards for nitrogen dioxide (NO2) and suspended particulate matter (SPM) in urban areas is still low in Japan. Diesel vehicles emit the vast majority of air pollutants from exhaust. Therefore, developing emission measures, particularly for diesel vehicles, is an urgent task for addressing air pollution. Furthermore, at the Third Conference of the Parties to the UN Framework Convention on Climate Change (COP 3) held in Kyoto in December 1997, Japan pledged to reduce greenhouse gas emissions to 6 percent below 1990 levels for the first commitment period of 2008 to 2012. To address vehicle emissions, Japan is gradually introducing increasingly strict NOx and particulate matter regulations.
Technical Paper

Reduction of Unburnt Methanol and Formaldehyde Emissions from Methanol Fueled Vehicles-Acceleration of Oxidative Reaction on Catalyst by Pre-Catalyst Installation and Its Heating

1996-02-01
960238
It is well known that during engine cold-start, methanol fueled vehicles have a tendency to emit significant amount of unburnt methanol and formaldehyde, which is an oxidant of methanol The emission behavior and reduction methods of these components are studied in this paper The reduction rate of these unburnt components exceeds 99% when the temperature of a catalyst is enough high However during engine cold-start the oxidative reaction can not begin, and it takes several minutes to warm up the catalyst After the temperature of the catalyst reaches to the light-off temperature it rises steeply and high reduction rates of these components are obtained at the same time Therefore, the catalyst temperature must be raised quickly and effectively in order to realize the proper oxidative reduction of unburnt methanol and formaldehyde emissions during engine cold-start Consequently the effectiveness of installing pre-catalysts was examined in this study Some pre-catalysts (200cm3/piece) were placed after the exhaust manifold Results showed that within 10 minutes of initiating the idling experiment after engine cold-start the pre-catalysts were very effective and decreased emissions of the unburnt components by two thirds Moreover pre-catalysts which were electrically pre-heated with an external heater could more drastically decrease the amount of these components under the same experimental conditions However for such electrical heating to be practical it is necessary to reduce the level of heating energy to as low an amount as possible Therefore two power-saving methods were tried One method consisted of installing a glow plug in the upper stream of the pre-catalyst This method was based on an idea that unburnt components coming in contact with the glow plug are activated and easily oxidized and that they then release thermal energy for quick heating The results showed that this method was effective for reduction (more than 40%) of unburnt methanol but was ineffective for reducing formaldehyde since spot heating caused a balancing of formaldehyde formation/decomposition Therefore another method was examined A small-sized electric heated pre-catalyst(50cm3)was installed in order to heat a full section of the exhaust stream of the catalyst The results showed that this method had a great effect in reducing these harmful substances Moreover, it was demonstrated that this method consumes little energy and is more practical as a means of heating
Technical Paper

Reduction of NOx and PM for a Heavy Duty Diesel Using 50% EGR Rate in Single Cylinder Engine

2010-04-12
2010-01-1120
For reducing NOx emissions, EGR is effective, but an excessive EGR rate causes the deterioration of smoke emission. Here, we have defined the EGR rate before the smoke emission deterioration while the EGR rate is increasing as the limiting EGR rate. In this study, the high rate of EGR is demonstrated to reduce BSNOx. The adapted methods are a high fuel injection pressure such as 200 MPa, a high boost pressure as 451.3 kPa at 2 MPa BMEP, and the air intake port that maintains a high air flow rate so as to achieve low exhaust emissions. Furthermore, for withstanding 2 MPa BMEP of engine load and high boosting, a ductile cast iron (FCD) piston was used. As the final effect, the installations of the new air intake port increased the limiting EGR rate by 5%, and fuel injection pressure of 200 MPa raised the limiting EGR rate by an additional 5%. By the demonstration of increasing boost pressure to 450 kPa from 400 kPa, the limiting EGR rate was achieved to 50%.
Technical Paper

Real-Time and Direct Measurement of Pollutants in Exhaust Gas Utilizing Supersonic Jet / Resonance Enhanced Multi-Photon Ionization

2008-04-14
2008-01-0761
Supersonic jet / resonance enhanced multi-photon ionization (Jet-REMPI) technique was focused on the analyzing method for gas mixture like exhaust gas from automobiles. In this method, when the mass number and wavelength of excitation laser are determined adequately, the target compound can be monitored selectively. We developed a new analyzer utilizing REMPI method. Using this analyzer, real-time monitoring of exhaust gas from a motorcycle and diesel vehicles was conducted. As a result of real-time monitoring test of the vehicles, concentrations of aromatic compounds like benzene toluene etc. were quantified and real-time changes of their concentrations were observed.
Technical Paper

Real-Time Measurement of Particle Size Distribution From Diesel Engines Equipped With Continuous Regenerative DPF Under a Transient Driving Condition

2004-06-08
2004-01-1984
A new PM measurement method, such as particle measurement equipments, samplings and so on, is being studied at present for a type approval test in the future. Particles emitted from diesel engines, especially the particles that are called “Nuclei Mode Particles” are very unstable and easily influenced by the engine operating conditions and the measurement conditions. Most of nuclei mode particles are said to consist of volatile organic particles with mainly high carbon numbers. It is said that a continuous regenerative type DPF (Diesel Particulate Filter) consisting of oxidation catalyst and ceramic filter will prevail in the near future. These particles may be able to be reduced by an oxidation catalyst in this DPF.
Technical Paper

Performance and Emission Characteristics of a DI Diesel Engine Operated on Dimethyl Ether Applying EGR with Supercharging

2000-06-19
2000-01-1809
This research investigates engine performance and the possibility of reducing exhaust emissions by using Dimethyl Ether (DME). There are high expectations for DME as a new alternative fuel for diesel engines for heavy-duty vehicles. In this experiment, a single cylinder direct-injection diesel engine with displacement of 1.05 liter and a compression ratio of 18:1 was used as a base engine. Common rail type DME fuel injection equipment for the single cylinder engine experiment was installed, and direct injection in the cylinder of DME was tried. Results indicated that high injection pressure, high swirl ratio, and supercharging using multi-hole injectors are effective for combustion promotion in the DME fueled diesel engine (DME engine). The output of the DME engine using supercharging with an intercooler and EGR was higher than that of a diesel engine. By increasing the EGR rate Nox emission was reduced to about 1/3 that of the diesel engine. Smoke was not completely emitted.
Journal Article

Optimization of PM Measurements with a Number Counting Method

2008-10-06
2008-01-2436
Repeatabilities of PM measurements on a heavy-duty diesel engine equipped with a diesel particulate filter (DPF) using a filter weighing method and a number counting method with a full flow dilution system and a partial flow system were evaluated. The filter method with partial flow exhibited the best repeatability. However, a good correlation between the full flow and the partial flow number counting results suggests that the fluctuations observed using the number counting method were caused by changes in the engine exhaust. Applying a strict preconditioning procedure should improve the repeatability of the number counting method because this method is more sensitive than the filter weighing method. In addition, the effects of the specifications for the number counting method were evaluated. The results indicate that the hose length from the tip of the sampling probe to the inlet of the number counting system had a negligible effect.
Technical Paper

Optimization of Hydrogen Jet Configuration by Single Hole Nozzle and High Speed Laser Shadowgraphy in High Pressure Direct Injection Hydrogen Engines

2011-08-30
2011-01-2002
A new ignition-combustion concept named PCC (Plume Ignition Combustion Concept), which ignite rich mixture plume in the middle of injection period or right after injection of hydrogen is completed, is proposed by the authors in order to reduce NOx emissions in high engine load conditions with minimizing trade-offs on thermal efficiency. In this study fundamental requirements of hydrogen jet to optimize PCC are investigated by using single and multi-hole nozzle with a combination of high speed laser shadowgraphy to visualize propagating flame. As a result, it was infered that igniting the mixture plume in the middle of injection period with minimizing jet penetration to chamber wall is effective reducing NOx formation even further.
Technical Paper

Optimization of Engine System for Application of Biodiesel Fuel

2007-07-23
2007-01-2028
Application of biodiesel fuel (BDF) to diesel engine is very effective to reduce CO2 emission, because biodiesel is carbon neutral in principle. However, biodiesels yield an increase in NOx emission from conventional diesel engine, compared with diesel fuel case. Therefore, some strategies are needed for meeting the future emission regulations when using biodiesel. In this study, rapeseed oil methyl ester (RME) was applied to diesel engine equipped with exhaust gas recirculation (EGR) system and NOx storage reduction (NSR) catalyst. NOx reduction rate of NSR catalyst was drastically decreased by using RME, even if injection quantity of RME for rich spike was enhanced. However, an increase in EGR rate could reduce NOx emission without the deterioration in smoke and PM emissions.
Technical Paper

Numerical Simulation of Multicomponent Fuel Spray

2003-05-19
2003-01-1838
Fuel design for internal combustion engines has been proposed in our study. In this concept, the multicomponent fuel with high and low volatility fuels are used in order to control the spray and combustion processes in internal combustion engine. Therefore, it is necessary to understand the spray and combustion characteristics of the multicomponent fuels in detail. In the present study, the modeling of multicomponent spray vaporization was conducted using KIVA3V code. The physical fuel properties of multicomponent fuel were estimated using the source code of NIST Mixture Property Database. Peng-Robinson equation of state and fugacity calculation were applied to the estimation of liquid-vapor equilibrium in order to take account for non-ideal vaporization process. Two-zone model in which fuel droplet was divided into droplet surface and inner core was introduced in order to simply consider the temperature distribution in fuel droplet.
Technical Paper

NOx Reduction on Direct Injection Natural Gas Engines

1999-10-25
1999-01-3608
Direct injection natural gas engines need to produce in the mixing process between the fuel jet and the air in the cylinder a “stratified” fuel-air mixture, with an easily ignitable composition near the spark plug at the time of ignition. Stratified-charge engines have a tendency to produce high NOx emissions due to the high temperature of burning areas at the start of combustion since the fuel-air mixture is not uniform. Therefore, it is necessary to reduce NOx emissions from direct injection natural gas engines. The objective of this study is to investigate measures to reduce emissions, especially NOx emissions, from direct injection natural gas engines. A single cylinder test engine was equipped with a newly developed high-pressure electromagnetic injector and a spark plug.
X