Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Visualization of Direct-Injection Gasoline Spray and Wall-impingement Inside a Motoring Engine

1998-10-19
982702
Two-dimensional pulse-laser Mie scattering visualization of the direct-injection gasoline fuel sprays and wall impingement processes was carried out inside a single-cylinder optically accessible engine under motoring condition. The injectors have been first characterized inside a pressurized chamber using identical technique, as well as high-speed microscopic visualization and phase Doppler measurement techniques. The effects of injector cone angle, location, and injection timings on the wall impingement processes were investigated. It was found that the fuel vaporization is not complete at the constant engine speed tested. Fuel spray droplets were observed to disperse wider in the motored engine when compared with an isothermal quiescent ambient conditions. The extent of wall-impingement varies significantly with the injector mounting position and spray cone angle; however, its effect can be reduced to some extent by optimizing the injection timing.
Technical Paper

Visualization and Analysis of the Impingement Processes of a Narrow-Cone DI Gasoline Spray

2001-05-07
2001-01-2023
The direct injection spray-wall interactions were investigated experimentally using high-speed laser-sheet imaging, shadowgraphy, wetted footprints and phase Doppler interferometry techniques. A narrow-cone high-pressure swirl injector is used to inject iso-octane fuel onto a plate, at three different impact angles inside a pressurized chamber. Heated air and plate conditions were compared with unheated cases. Injection interval was also varied in the heated case to compare dry- and wet- wall impingement behaviors. High-speed macroscopic Mie-scattering images showed that presence of wall and air temperature has only minor effect on the bulk spray structure and penetration speed for the narrow-cone injector tested. The overall bulk motions of the spray plume and its spatial position at a given time are basically unaffected until a few millimeters before impacting the wall.
Technical Paper

Ultrafast X-Ray Phase-Enhanced Microimaging for Visualizing Fuel Injection Process

2005-09-11
2005-24-093
Propagation-based and phase-enhanced x-ray imaging was developed as a unique metrology technique to visualize the internal structure of high-pressure fuel injection nozzles. We have visualized the microstructures inside 200-μm fuel injection nozzles in a 3-mm-thick steel housing using this novel technique. Furthermore, this new x-ray-based metrology technique has been used to directly study the highly transient needle motion in the nozzles in situ and in real-time, which is virtually impossible by any other means. The needle motion has been shown to have the most direct effect on the fuel jet structure and spray formation immediately outside of the nozzle. In addition, the spray cone-angle has been perfectly correlated with the numerically simulated fuel flow inside the nozzle due to the transient nature of the needle during the injection.
Technical Paper

Transient Flow and Pressure Characteristics Inside a Closed-Coupled Catalytic Converter

1998-10-19
982548
An experimental study was carried out to characterize the exhaust flow structure inside the closed-coupled catalytic converter, which is installed on a firing four-cylinder 12-valve passenger car gasoline engine. Simultaneous velocity and pressure measurements were taken using cycle-resolved Laser Doppler anemometer (LDA) technique and pressure transducer. A small fraction of titanium (IV) iso-propoxide was dissolved in gasoline to generate titanium dioxide during combustion as seeding particles for the LDA measurements. It was found that the velocity is highly fluctuating due to the pulsating nature of the engine exhaust flow, which strongly depends on the engine operating conditions and the measuring locations. The pressure oscillation is correlated with the transient exhaust flow characteristics. The main exhaust flow event from each cylinder can only be observed at the certain region in front of the monolith brick.
Technical Paper

Transient Flow Characteristics Inside the Catalytic Converter of a Firing Gasoline Engine

1997-02-24
971014
An experimental study was performed, using cycle-resolved laser Doppler velocimetry (LDV) technique, to characterize the exhaust flow structure inside a catalytic converter retro-fitted to a firing four-cylinder gasoline engine over different operating conditions. A small fraction of titanium (IV) isopropoxide was dissolved in gasoline to generate titanium dioxide during combustion as seeding particles for LDV measurements. It was found that in the front plane of the catalytic monolith, the velocity is highly fluctuating due to the pulsating nature of the engine exhaust flow, which strongly depends on the engine operating conditions. Under unloaded condition, four pairs of major peaks are clearly observed in the time history of the velocity, which correspond to the main exhaust events of each individual cylinder.
Technical Paper

Time-Resolved Measurements in Transient Port Injector Sprays

1995-02-01
950509
A global characterization of the spray distribution of various current and development types of automotive fuel injectors was obtained. Axial and radial measurement of droplet sizes, velocities and volume fluxes were made with a phase Doppler particle analyzer (PDPA) for a transient port injector spray in quiescent atmospheric conditions. Time-resolved measurements involving the time-of-arrival of each droplet associated with its size and velocity components were also acquired. Additionally, the liquid sprays emanating from various types of port fuel injectors were visualized, through planar laser induced fluorescence (PLIF) technique, at different time instants. Such detailed study provides an improved understanding of the temporal or unsteady behavior of port injector spray.
Technical Paper

Study of a Stratified-Charge DISI Engine with an Air-Forced Fuel Injection System

2000-06-19
2000-01-2901
A small-bore 4-stroke single-cylinder stratified-charge DISI engine using an air-forced fuel injection system has been designed and tested under various operating conditions. At light loads, fuel consumption was improved by 16∼19% during lean, stratified-charge operation at an air-fuel ratio of 37. NOx emissions, however, were tripled. Using EGR during lean, stratified-charge operation significantly reduced NOx emissions while fuel consumption was as low as the best case without EGR. It was also found that combustion and emissions near the lean limit were a strong function of the combination of injection and spark timings, which affect the mixing process. Injection pressure, air injection duration, and time delay between fuel and air injections also played a role. Generating in-cylinder air swirl motion slightly improved fuel economy.
Technical Paper

Strategies to Gain the Loss in Power in a Military Diesel Engine Using JP-8 Instead of ULSD

2020-04-14
2020-01-0804
The Department of Defense (DOD) has adopted the use of JP-8 under the “single battlefield fuel” policy. Fuel properties of JP-8 which are different from ULSD include cetane number, density, heating value and compressibility (Bulk modulus). While JP8 has advantages compared to ULSD, related to storage, combustion and lower soot emissions, its use cause a drop in the peak power in some military diesel engines. The engines that has loss in power use the Hydraulically actuated Electronic Unit Injection (HEUI) fuel system. The paper explains in details the operation of HEUI including fuel delivery into the injector and its compression to the high injection pressure before its delivery in the combustion chamber. The effect of fuel compressibility on the volume of the fuel that is injected into the combustion chamber is explained in details.
Technical Paper

Spray Targeting Inside a Production-Type Intake Port of a 4-Valve Gasoline Engine

1996-02-01
960115
An experimental study was carried out to investigate the spray behavior inside engine intake ports. Production-type intake ports of four-valve gasoline engines were modified for the optical access at directions. The global spray formation process was visualized through laser Mie scattering technique. The spray breakup and atomization processes, spray targeting and fuel dispersing characteristics were investigated as a function of elapse time after fuel injection. The spray interaction with the port wall and port air flow were examined with different types of port fuel injectors including single-stream, multi-stream, and air-shrouded ones. The spray targeting and dispersing characteristics inside two different intake ports were examined. It was found that spray targeting and fuel dispersion inside the intake port are strongly dependent on the spray characteristics, as a result of different injector designs and injector installation positions.
Journal Article

Spray Characterization of Ethanol Gasoline Blends and Comparison to a CFD Model for a Gasoline Direct Injector

2010-04-12
2010-01-0601
Operation of flex fuel vehicles requires operation with a range of fuel properties. The significant differences in the heat of vaporization and energy density of E0-E100 fuels and the effect on spray development need to be fully comprehended when developing engine control strategies. Limited enthalpy for fuel vaporization needs to be accounted for when developing injection strategies for cold start, homogeneous and stratified operation. Spray imaging of multi-hole gasoline injectors with fuels ranging from E0 to E100 and environmental conditions that represent engine operating points from ambient cold start to hot conditions was performed in a spray chamber. Schlieren visualization technique was used to characterize the sprays and the results were compared with Laser Mie scattering and Back-lighting technique. Open chamber experiments were utilized to provide input and validation of a CFD model.
Technical Paper

Spectral Analysis and Chemiluminescence Imaging of Hydrogen Addition to HSDI Diesel Combustion Under Conventional and Low-Temperature Conditions

2004-10-25
2004-01-2919
Late-injection low-temperature diesel combustion is found to further reduce NOx and soot simultaneously. The combustion phenomena and detail chemical kinetics are studied with high speed spray/combustion images and time-resolved spectroscopy analysis in a rapid compression machine (RCM) with a small bowl combustion chamber. High swirl and high EGR condition can be achieved in the RCM; variable injection pressure and injection timing is supplied by the high-pressure common-rail fuel injection system. Effect of small amount of premix hydrogen gas on diesel combustion is also studied in the RCM. A hydrogen injector is located in the upstream of air inlet for delivery small amount and premixed hydrogen gas into cylinder just before the compression stroke. The ignition delay is studied both from the pressure curves and the chemiluminescence images.
Technical Paper

Sooting Tendencies in an Air-Forced Direct Injection Spark-Ignition (DISI) Engine

2000-03-06
2000-01-0255
Particulate emissions are reported for a 0.31 L single cylinder engine fitted with an air forced direct injection system. Trends in number, size, and mass of engine out particle emissions are examined as a function of injection timing, spark timing, and EGR. Injection timing determines to a large degree the nature of the combustion, with early injection leading to homogeneous like combustion and late injection producing stratified charge combustion. As fuel injection is retarded, at a fixed lean air to fuel ratio, PM emissions decline to a minimum at an injection time well within the compression stroke, after which they rapidly increase. In the heavily stratified regime, the PM increase can be attributed to a growing number of rich zones that occur in the progressively more inhomogeneous fuel mixture. At fixed injection timing, advancing the spark causes a general increase in particle emissions.
Technical Paper

Simulation of Dual-Fuel-CI and Single-Fuel-SI Engine Combustion Fueled with CNG

2016-04-05
2016-01-0789
With increasing interest to reduce the dependency on gasoline and diesel, alternative energy source like compressed natural gas (CNG) is a viable option for internal combustion engines. Spark-ignited (SI) CNG engine is the simplest way to utilize CNG in engines, but direct injection (DI) Diesel-CNG dual-fuel engine is known to offer improvement in combustion efficiency and reduction in exhaust gases. Dual-fuel engine has characteristics similar to both SI engine and diesel engine which makes the combustion process more complex. This paper reports the computational fluid dynamics simulation of both DI dual-fuel compression ignition (CI) and SI CNG engines. In diesel-CNG dual-fuel engine simulations and comparison to experiments, attention was on ignition delay, transition from auto-ignition to flame propagation and heat released from the combustion of diesel and gaseous fuel, as well as relevant pollutants emissions.
Technical Paper

Scavenging of a Firing Two-Stroke Spark-Ignition Engine

1994-03-01
940393
Current demands for high fuel efficiency and low emissions in automotive powerplants have drawn attention to the two-stroke engine configuration. The present study measured trapping and scavenging efficiencies of a firing two-stroke spark-ignition engine by in-cylinder gas composition analysis. Intermediate results of the procedure included the trapped air-fuel ratio and residual exhaust gas fraction. Samples, acquired with a fast-acting electromagnetic valve installed in the cylinder head, were taken of the unburned mixture without fuel injection and of the burned gases prior to exhaust port opening, at engine speeds of 1000 to 3000 rpm and at 10 to 100% of full load. A semi-empirical, zero-dimensional scavenging model was developed based on modification of the non-isothermal, perfect-mixing model. Comparison to the experimental data shows good agreement.
Journal Article

Role of Volatility in the Development of JP-8 Surrogates for Diesel Engine Application

2014-04-01
2014-01-1389
Surrogates for JP-8 have been developed in the high temperature gas phase environment of gas turbines. In diesel engines, the fuel is introduced in the liquid phase where volatility plays a major role in the formation of the combustible mixture and autoignition reactions that occur at relatively lower temperatures. In this paper, the role of volatility on the combustion of JP-8 and five different surrogate fuels was investigated in the constant volume combustion chamber of the Ignition Quality Tester (IQT). IQT is used to determine the derived cetane number (DCN) of diesel engine fuels according to ASTM D6890. The surrogate fuels were formulated such that their DCNs matched that of JP-8, but with different volatilities. Tests were conducted to investigate the effect of volatility on the autoignition and combustion characteristics of the surrogates using a detailed analysis of the rate of heat release immediately after the start of injection.
Technical Paper

Robustness and Performance Near the Boundary of HCCI Operating Regime of a Single-Cylinder OKP Engine

2006-04-03
2006-01-1082
A single-cylinder OKP (optimized kinetic process) engine, which uses homogeneous-charge compression-ignition (HCCI) technology, was tested, following a previous study, to evaluate the combustion system robustness and to improve the engine performance near the boundaries of the HCCI operating regime at light loads, high loads and high speed. To evaluate the robustness of HCCI combustion control, gasoline fuels with different RON were used, and the engine was tested at different coolant temperatures. It was demonstrated that the proposed HCCI control approaches could control the OKP engine system to operate robustly using different fuels and at different coolant temperatures. The effects of fuel injection timing and residual gas fraction on HCCI combustion and emissions, especially CO emissions and combustion efficiency, were tested at light loads; and the mechanisms were analyzed.
Technical Paper

Relationship Between Monochromatic Gas Radiation Characteristics and SI Engine Combustion Parameters

1993-03-01
930216
Relationships between radiant emissions, as measured by an in-cylinder optical sensor, and spark-ignition engine combustion parameters are presented for possible use in engine combustion diagnostics and future engine control strategies. A monochromatic gas radiation model, developed in a previous study, was used to derive a series of relationships between the measured radiant emission characteristics and several spark-ignition engine combustion parameters, such as the amplitude and phasing of the peak heat-release rate, combustion duration, IMEP, NOx emission, pressure, trapped mass and exhaust-gas temperature. In addition, many engine parameters of interest can be estimated indirectly from the radiation signal using empirical models. Correlations of air-fuel ratio and exhaust emissions are presented which contain a combination of radiant emission parameters and known base-engine operating parameters, such as intake manifold pressure, etc.
Technical Paper

Quantitative Measurements of Direct-Injection Gasoline Fuel Sprays in Near-Nozzle Region Using Synchrotron X-Ray

2001-03-05
2001-01-1293
A quantitative and time-resolved technique has been developed to probe the dense spray structure of direct-injection (DI) gasoline sprays in near-nozzle region. This technique uses the line-of-sight absorption of monochromatic x-rays from a synchrotron source to measure the fuel mass with time resolution better than 1 μs. The small scattering cross-section of fuel at x-rays regime allows direct measurements of spray structure that are difficult with most visible-light optical techniques. Appropriate models were developed to determine the fuel density as a function of time.
Technical Paper

Predictions of the Effects of High Temperature Walls, Combustion, and Knock on Heat Transfer in Engine-Type Flows

1990-02-01
900690
Consideration of the heat transfer effects in low-heat-rejection engines has prompted further study into engine heat transfer phenomena. In a previous study, an approximate solution of the one-dimensional energy equation was acquired for transient, compressible, low-Mach number, turbulent boundary layers typical of those found in engines. The current study shows that an approximate solution of the one-dimensional energy equation with arbitrarily-distributed heat release can also be obtained. Using this model, the effects of high temperature walls, combustion, and autoignition on heat transfer can be studied. In the case of high temperature walls, the model predicts the expected behavior unless the quench distance gets very small. For combustion, the reaction must occur close to the wall for a direct effect on the heat transfer to be observed. With autoignition, instantaneous values of heat flux reach levels as high as 6 MW/m2, and oscillate in phase with the pressure wave.
Technical Paper

Optical and Numerical Investigation of Pre-Injection Reactions and Their Effect on the Starting of a Diesel Engine

2009-04-20
2009-01-0648
Ultraviolet chemiluminescence has been observed in a diesel engine cyclinder during compression, but prior to fuel injection under engine starting conditions. During a portion of the warm-up sequence, the intensity of this emission exhibits a strong correlation to the phasing of the subsequent combustion. Engine exhaust measurements taken from a continuously misfiring, motored engine confirm the generation of formaldehyde (HCHO) in such processes. Fractions of this compound are expected to be recycled as residual to participate in the following combustion cycle. Spectral measurements taken during the compression period prior to fuel injection match the features of Emeleus' cool flame HCHO bands that have been observed during low temperature heat release reactions occurring in lean HCCI combustion. That the signal from the OH* bands is weak implies a buildup of HCHO during compression.
X