Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Waste Heat Recovery from Multiple Heat Sources in a HD Truck Diesel Engine Using a Rankine Cycle - A Theoretical Evaluation

2012-09-10
2012-01-1602
Few previous publications investigate the possibility of combining multiple waste heat sources in a combustion engine waste heat recovery system. A waste heat recovery system for a HD truck diesel engine is evaluated for utilizing multiple heat sources found in a conventional HD diesel engine. In this type of engine more than 50% of heat energy goes futile. The majority of the heat energy is lost through engine exhaust and cooling devices such as EGRC (Exhaust gas recirculation cooler), CAC (Charge air cooler) and engine cooling. In this paper, the potential of usable heat recuperation from these devices using thermodynamic analysis was studied, and also an effort is made to recuperate most of the available heat energy that would otherwise be lost. A well-known way of recuperating this heat energy is by employing a Rankine cycle circuit with these devices as heat sources (single loop or dual loop), and thus this study is focused on using a Rankine cycle for the heat recovery system.
Technical Paper

Vehicle Driving Cycle Simulation of a Pneumatic Hybrid Bus Based on Experimental Engine Measurements

2010-04-12
2010-01-0825
In the study presented in this paper, a vehicle driving cycle simulation of the pneumatic hybrid has been conducted. The pneumatic hybrid powertrain has been modeled in GT-Power and validated against experimental data. The GT-Power engine model has been linked with a MATLAB/simulink vehicle model. The engine in question is a single-cylinder Scania D12 diesel engine, which has been converted to work as a pneumatic hybrid. The base engine model, provided by Scania, is made in GT-power and it is based on the same engine configuration as the one used in real engine testing. During pneumatic hybrid operation the engine can be used as a 2-stroke compressor for generation of compressed air during vehicle deceleration and during vehicle acceleration the engine can be operated as a 2-stroke air-motor driven by the previously stored pressurized air.
Technical Paper

Variable Valve Actuation for Timing Control of a Homogeneous Charge Compression Ignition Engine

2005-04-11
2005-01-0147
Autoignition of a homogeneous mixture is very sensitive to operating conditions. Therefore fast combustion phasing control is necessary for reliable operation. There are several means to control the combustion phasing of a Homogeneous Charge Compression Ignition (HCCI) engine. This paper presents cycle-to-cycle cylinder individual control results from a six-cylinder HCCI engine using a Variable Valve Actuation (VVA) system. As feedback signal, the crank angle for 50% burned, based on cylinder pressure, is used. Three control structures are evaluated, Model Predictive Control (MPC), Linear Quadratic Gaussian control (LQG) and PID control. In the control design of the MPC and LQG controller, dynamic models obtained by system identification were used. Successful experiments were performed on a port-injected six-cylinder heavy-duty Diesel engine operating in HCCI mode.
Technical Paper

Validation of a Self Tuning Gross Heat Release Algorithm

2008-06-23
2008-01-1672
The present paper shows the validation of a self tuning heat release method with no need to model heat losses, crevice losses and blow by. Using the pressure and volume traces the method estimates the polytropic exponents (before, during and after the combustion event), by the use of the emission values and amount of fuel injected per cycle the algorithm calculates the total heat release. These four inputs are subsequently used for computing the heat release trace. The result is a user independent algorithm which results in more objective comparisons among operating points and different engines. In the present paper the heat release calculated with this novel method has been compared with the one computed using the Woschni correlation for modeling the heat transfer. The comparison has been made using different fuels (PRF0, PRF80, ethanol and iso-octane) making sweeps in relative air-fuel ratio, engine speed, EGR and CA 50.
Technical Paper

Transient Control of a Multi Cylinder HCCI Engine During a Drive Cycle

2005-04-11
2005-01-0153
This study applies a state feedback based Closed-Loop Combustion Control (CLCC) using Fast Thermal Management (FTM) on a multi cylinder Variable Compression Ratio (VCR) engine. At speeds above 1500 rpm is the FTM's bandwidth broadened by using the VCR feature of this engine, according to a predefined map, which is a function of load and engine speed. Below 1500 rpm is the PID based CLCC using VCR applied instead of the FTM while slow cylinder balancing is effectuated by the FTM. Performance of the two CLCC controllers are evaluated during an European EC2000 drive cycle, while HC, CO and CO2 emissions are measured online by a Fast Response Infrared (FRI) emission equipment. A load and speed map calculated for an 1.6L Opel Astra is used to get reference values for the dynamometer speed and the load control. The drive cycle test is initiated from a hot engine and hence no cold start is included. Commercial RON/MON 92/82 gasoline, which corresponds to US regular, is utilized.
Technical Paper

Toward Predictive Combustion Modeling of CNG SI Engines in 1D Simulation Tools

2020-09-15
2020-01-2079
In the recent years, the interest in heavy-duty engines fueled with Compressed Natural Gas (CNG) is increasing due to the necessity to comply with the stringent CO2 limitation imposed by national and international regulations. Indeed, the reduced number of carbon atoms of the NG molecule allows to reduce the CO2 emissions compared to a conventional fuel. The possibility to produce synthetic methane from renewable energy sources, or bio-methane from agricultural biomass and/or animal waste, contributes to support the switch from conventional fuel to CNG. To drive the engine development and reduce the time-to-market, the employment of numerical analysis is mandatory. This requires a continuous improvement of the simulation models toward real predictive analyses able to reduce the experimental R&D efforts. In this framework, 1D numerical codes are fundamental tools for system design, energy management optimization, and so on.
Technical Paper

The Usefulness of Negative Valve Overlap for Gasoline Partially Premixed Combustion, PPC

2012-09-10
2012-01-1578
Partially premixed combustion has the potential of high efficiency and simultaneous low soot and NOx emissions. Running the engine in PPC mode with high octane number fuels has the advantage of a longer premix period of fuel and air which reduces soot emissions, even at higher loads. The problem is the ignitability at low load and idle operating conditions. The objective is to investigate the usefulness of negative valve overlap on a light duty diesel engine running with gasoline partially premixed combustion at low load operating conditions. The idea is to use negative valve overlap to trap hot residual gases to elevate the global in-cylinder temperature to promote auto-ignition of the high octane number fuel. This is of practical interest at low engine speed and load operating conditions because it can be assumed that the available boost is limited. The problem with NVO at low load operating conditions is that the exhaust gas temperature is low.
Technical Paper

The Potential of SNCR Based NOx Reduction in a Double Compression Expansion Engine

2018-04-03
2018-01-1128
Selective Non-Catalytic Reduction (SNCR), used to reduce the emissions of nitrogen oxides (NOx), has been a well-established technology in the power plant industry for several decades. The SNCR technique is an aftertreatment strategy based on thermal reduction of NOx at high temperatures. In the compression ignition engine application, the technology has not been applicable due to low exhaust temperatures, which makes the SCR (Selective Catalytic Reduction) system essential for efficient nitrogen oxide reduction to fulfill the environment legislation. For a general Double Compression Expansion Engine (DCEE) the complete expansion cycle is split in two separate cycles, i.e. the engine is a split cycle engine. In the first cylinder the combustion occurs and in the second stage the combustion gas is introduced and further expanded in a low-pressure expansion cylinder. The combustion cylinder is connected with the expansion cylinder through a large insulated high-pressure tank.
Journal Article

The Key Role of the Closed-loop Combustion Control for Exploiting the Potential of Biodiesel in a Modern Diesel Engine for Passenger Car Applications

2011-06-09
2011-37-0005
The present paper describes the results of a cooperative research project between GM Powertrain Europe and Istituto Motori - CNR aimed at studying the capability of GM Combustion Closed-Loop Control (CLCC) in enabling seamless operation with high biodiesel blending levels in a modern diesel engine for passenger car applications. As a matter of fact, fuelling modern electronically-controlled diesel engines with high blends of biodiesel leads to a performance reduction of about 12-15% at rated power and up to 30% in the low-end torque, while increasing significantly the engine-out NOx emissions. These effects are both due to the interaction of the biodiesel properties with the control logic of the electronic control unit, which is calibrated for diesel operation. However, as the authors previously demonstrated, if engine calibration is re-tuned for biodiesel fuelling, the above mentioned drawbacks can be compensated and the biodiesel environmental inner qualities can be fully deployed.
Technical Paper

The Key Role of Advanced, Flexible Fuel Injection Systems to Match the Future CO2 Targets in an Ultra-Light Mid-Size Diesel Engine

2018-05-30
2018-37-0005
The paper describes the results achieved in developing a new diesel combustion system for passenger car application that, while capable of high power density, delivers excellent fuel economy through a combination of mechanical and thermodynamic efficiencies improvement. The project stemmed from the idea that, by leveraging the high fuel injection pressure of last generation common rail systems, it is possible to reduce the engine peak firing pressure (pfp) with great benefits on reciprocating and rotating components light-weighting and friction for high-speed light-duty engines, while keeping the power density at competitive levels. To this aim, an advanced injection system concept capable of injection pressure greater than 2500 bar was coupled to a prototype engine featuring newly developed combustion system. Then, the matching among these features have been thoroughly experimentally examined.
Technical Paper

The Effect of “Clean and Cold” EGR on the Improvement of Low Temperature Combustion Performance in a Single Cylinder Research Diesel Engine

2008-04-14
2008-01-0650
In the present paper, the effect of the clean and cold EGR flow on the performance of a diesel engine running under conventional and Low Temperature Combustion conditions is investigated by means of experimental tests on a single-cylinder research engine. The engine layout was “ad hoc” designed to isolate the effect of the clean and cold recirculated gas flow on the combustion quality. The results have shown that the thermodynamic temperature is the main factor affecting the engine performances, while the effect of a cleaner EGR flow, in terms of lower smoke and unburned compounds (HC and CO), is negligible.
Journal Article

Study of the Effect of the Engine Parameters Calibration to Optimize the Use of Bio-Ethanol/RME/Diesel Blend in a Euro5 Light Duty Diesel Engine

2013-04-08
2013-01-1695
In the global scenario of encouraging the use of renewable sources, the bioethanol as fuel supply in the automotive sector is receiving increasing interest. In the present paper the results of a research activity aimed to study the impact of a bioethanol/biodiesel/mineral diesel blend on performance and emissions of an automotive diesel engine are reassumed. An experimental campaign has been devoted to characterize the engine fuelled by the ethanol based blend highlighting the advantages and issues related to the bioethanol use. Moreover, the effects of the most important injection settings on the engine performance have been detailed, applying a Design of Experiment (DoE) method, to identify the potentiality offered by a proper engine calibration to optimize the ethanol blend use.
Technical Paper

Study of a Heavy Duty Euro5 EGR-Engine Sensitivity to Fuel Change with Emphasis on Combustion and Emission Formation

2010-04-12
2010-01-0872
A diesel engine developed for an international market must be able to run on different fuels considering the diesel fuel qualities and the increasing selection of biofuels in the world. This leads to the question of how different fuels perform relative to a standard diesel fuel when not changing the hardware settings. In this study five fuels (Japanese diesel, MK3, EN590 with 10% RME, EN590 with 30% RME and pure RME) have been compared to a reference diesel fuel (Swedish MK1) when run on three different speeds and three different loads at each speed. The experiments are run on a Scania 13l Euro5 engine with standard settings for Swedish MK1 diesel. In general the differences were not large between the fuels. NO x usually increased compared to MK1 and then soot decreased as would be expected. The combustion efficiency increased with increased RME contents of the fuel but the indicated efficiency was not influenced by RME except for at higher loads.
Technical Paper

Simulation of a Pneumatic Hybrid Powertrain with VVT in GT-Power and Comparison with Experimental Data

2009-04-20
2009-01-1323
In the study presented in this paper, experimental data from a pneumatic hybrid has been compared to the results from a simulation of the engine in GT-Power. The engine in question is a single-cylinder Scania D12 diesel engine, which has been converted to work as a pneumatic hybrid. The base engine model, provided by Scania, is made in GT-Power and it is based on the same engine configuration as the one used during real engine testing. During pneumatic hybrid operation the engine can be used as a 2-stroke compressor for generation of compressed air during vehicle deceleration and during vehicle acceleration the engine can be operated as a 2-stroke air-motor driven by the previously stored pressurized air. There is also a possibility to use the stored pressurized air in order to supercharge the engine when there is a need for high torque, like for instance at take off after a standstill or during an overtake maneuver.
Technical Paper

Regulated Emissions and Detailed Particle Characterisation for Diesel and RME Biodiesel Fuel Combustion with Varying EGR in a Heavy-Duty Engine

2019-12-19
2019-01-2291
This study investigates particulate matter (PM) and regulated emissions from renewable rapeseed oil methyl ester (RME) biodiesel in pure and blended forms and contrasts that to conventional diesel fuel. Environmental and health concerns are the major motivation for combustion engines research, especially finding sustainable alternatives to fossil fuels and reducing diesel PM emissions. Fatty acid methyl esters (FAME), including RME, are renewable fuels commonly used from low level blends with diesel to full substitution. They strongly reduce the net carbon dioxide emissions. It is largely unknown how the emissions and characteristics of PM get altered by the combined effect of adding biodiesel to diesel and implementing modern engine concepts that reduce nitrogen oxides (NOx) emissions by exhaust gas recirculation (EGR).
Technical Paper

Reducing Throttle Losses Using Variable Geometry Turbine (VGT) in a Heavy-Duty Spark-Ignited Natural Gas Engine

2011-08-30
2011-01-2022
Stoichiometric operation of Spark Ignited (SI) Heavy Duty Natural Gas (HDNG) engines with a three way catalyst results in very low emissions however they suffer from bad gas-exchange efficiency due to use of throttle which results in high throttling losses. Variable Geometry Turbine (VGT) is a good practice to reduce throttling losses in a certain operating region of the engine. VTG technology is extensively used in diesel engines; it is very much ignored in gasoline engines however it is possible and advantageous to be used on HDNG engine due to their relatively low exhaust gas temperature. Exhaust gas temperatures in HDNG engines are low enough (lower than 760 degree Celsius) and tolerable for VGT material. Traditionally HDNG are equipped with a turbocharger with waste-gate but it is easy and simple to replace the by-pass turbocharger with a well-matched VGT.
Technical Paper

Pressure Oscillations During Rapid HCCI Combustion

2003-10-27
2003-01-3217
This work has focused on studying the in-cylinder pressure fluctuations caused by rapid HCCI combustion and determine what they consist of. Inhomogeneous autoignition sets up pressure waves traversing the combustion chamber. These pressure waves induce high gas velocities which causes increased heat transfer to the walls or in worst case engine damage. In order to study the pressure fluctuations a number of pressure transducers were mounted in the combustion chamber. The multi transducer arrangement was such that six transducers were placed circumferentially, one placed near the centre and one at a slight offset in the combustion chamber. The fitting of six transducers circumferentially was enabled by a spacer design and the two top mounted transducers were fitted in a modified cylinder head. During testing a disc shaped combustion chamber was used. The results of the tests conducted were that the in-cylinder pressure experienced during rapid HCCI-combustion is inhomogeneous.
Technical Paper

Partially Premixed Combustion at High Load using Gasoline and Ethanol, a Comparison with Diesel

2009-04-20
2009-01-0944
This paper is the follow up of a previous work and its target is to demonstrate that the best fuel for a Compression Ignition engine has to be with high Octane Number. An advanced injection strategy was designed in order to run Gasoline in a CI engine. At high load it consisted in injecting 54 % of the fuel very early in the pilot and the remaining around TDC; the second injection is used as ignition trigger and an appropriate amount of cool EGR has to be used in order to avoid pre-ignition of the pilot. Substantially lower NOx, soot and specific fuel consumption were achieved at 16.56 bar gross IMEP as compared to Diesel. The pressure rise rate did not constitute any problem thanks to the stratification created by the main injection and a partial overlap between start of the combustion and main injection. Ethanol gave excellent results too; with this fuel the maximum load was limited at 14.80 bar gross IMEP because of hardware issues.
Technical Paper

Parametric Analysis of the Effect of Pilot Quantity, Combustion Phasing and EGR on Efficiencies of a Gasoline PPC Light-Duty Engine

2017-09-04
2017-24-0084
In this paper, a parametric analysis on the main engine calibration parameters applied on gasoline Partially Premixed Combustion (PPC) is performed. Theoretically, the PPC concept permits to improve both the engine efficiencies and the NOx-soot trade-off simultaneously compared to the conventional diesel combustion. This work is based on the design of experiments (DoE), statistical approach, and investigates on the engine calibration parameters that might affect the efficiencies and the emissions of a gasoline PPC. The full factorial DoE analysis based on three levels and three factors (33 factorial design) is performed at three engine operating conditions of the Worldwide harmonized Light vehicles Test Cycles (WLTC). The pilot quantity (Qpil), the crank angle position when 50% of the total heat is released (CA50), and the exhaust gas recirculation (EGR) factors are considered. The goal is to identify an engine calibration with high efficiency and low emissions.
Technical Paper

Parametric Analysis of Compression Ratio Variation Effects on Thermodynamic, Gaseous Pollutant and Particle Emissions of a Dual-Fuel CH4-Diesel Light Duty Engine

2017-03-28
2017-01-0764
The paper reports the results of an experimental campaign aimed to assess the impact of the compression ratio (CR) variation on the performance and pollutant emissions, including the particle size spectrum, of a single cylinder research engine (SCE), representatives of the engine architectures for automotive application, operated in dual-fuel methane-diesel mode. Three pistons with different bowl volumes corresponding to CR values of 16.5, 15.5 and 14.5 were adopted for the whole test campaign. The injection strategy was based on two injection pulses per cycle, as conventionally employed for diesel engines. The test methodology per each CR included the optimization of both 1st injection pulse quantity and intake air mass flow rate in order to lower as much as possible the unburned methane emissions (MHC).
X