Refine Your Search

Search Results

Technical Paper

Two Types of Autoignition and Their Engine Applications

2005-04-11
2005-01-0178
The generally accepted explanation of autoignition in engines is that the reactivity is driven by temperature, where autoignition occurs after the mixture has reached some critical temperature (approx. 1000 K) by a combination of self-heating due to preignition reactions and compression heating due to piston motion and flame propagation. During the course of our investigations into autoignition processes and homogeneous charge compression ignition we have observed some ignitions that begin at much lower temperature (< 550 K). In this paper we describe these observations, our attempts to investigate their origins, and an alternative explanation that proposes that traditional models may be missing the chemistry that explains this behavior. Finally, applications of lower temperature chemical reactions are discussed.
Technical Paper

Tracer Fuel Injection Studies on Exhaust Port Hydrocarbon Oxidation: Part II

2000-06-19
2000-01-1945
Recently, studies were conducted on a single cylinder, four stroke engine to investigate the effect of temperature and local mixedness on exhaust port hydrocarbon oxidation. To examine the effect of temperature, hydrocarbon tracers (propane, propene, 1-butene, n-butane, and n-pentane) were individually injected into the exhaust port just behind the exhaust valve for operating conditions that provided different exhaust port temperatures. For the local mixedness experiments, tracer mixtures (propane + n-butane, 1-butene + n-butane, propene + n-butane) were injected into the exhaust port just behind either a normal exhaust valve or a shrouded exhaust valve. The concentration of tracers and their reaction products were measured using gas chromatography of samples withdrawn from the exhaust stream. The tracer consumption behavior with changing port temperature confirmed that there is a minimum port temperature for hydrocarbon oxidation.
Technical Paper

Tracer Fuel Injection Studies on Exhaust Port Hydrocarbon Oxidation

1998-10-19
982559
Time resolved exhaust port sampling results show that the gas mixture in the port at exhaust valve closing contains high concentrations of hydrocarbons. These hydrocarbons are mixed with hot in-cylinder gases during blowdown and can react either via gas phase kinetics in the exhaust port/runner system or subsequently on the exhaust catalyst before they are emitted. Studies were conducted on a single cylinder, four stroke engine in our laboratory to determine the interaction between the hot blowdown gases and the hydrocarbons which remain in the exhaust port. A preselected concentration and volume of hydrocarbon tracers (propane, propene, n-butane, and 1-butene) in either oxygen/nitrogen mixtures or pure nitrogen were injected into the exhaust port just behind the exhaust valve to control the initial conditions for any potential oxidation in the port.
Technical Paper

Time Resolved Exhaust Port Sampling Studies Related to Hydrocarbon Emissions from SI Engines

1998-10-19
982558
The role of post-combustion oxidation in influencing exhaust hydrocarbon emissions from spark ignition engines has been identified as one of the major uncertainties in hydrocarbon emissions research [l]*. While we know that post-combustion oxidation plays a significant role, the factors that control the oxidation are not well known. In order to address some of these issues a research program has been initiated at Drexel University. In preliminary studies, seven gaseous fuels: methane, ethane,ethene,propane,propene, n-butane, 1-butene and their blends were used to examine the effect of fuel structure on exhaust emissions. The results of the studies presented in an earlier paper [2] showed that the effect of fuel structure is manifested through its effect on the post-combustion environment and the associated oxidation process. A combination of factors like temperatures, fuel diffusion and reaction rates were used to examine and explain the exhaust hydrocarbon emission levels.
Technical Paper

The Effects of Octane Enhancing Ethers on the Reactivity of a Primary Reference Fuel Blend in a Motored Engine

1994-03-01
940478
This paper presents results of studies investigating the effect of octane enhancing ethers on the reactivity of an 87 octane mixture of primary reference fuels, 87 PRF, in a motored engine. 87 PRF was blended with small percentages of MTBE, ETBE, TAME and DIPE based on a constant gravimetric oxygen percentage in the fuel. The experiments were conducted in a modified single-cylinder Wisconsin AENL engine at compression ratios of 5.2 and 8.2. Supercharging and heating of the intake charge were used to control reactivity. The inlet gas temperature was increased from 320 K, where no reactivity occurred, until either autoignition occurred or the maximum temperature of the facility was reached. Exhaust carbon monoxide levels and in-cylinder pressure histories were monitored in order to determine and quantify reactivity.
Technical Paper

The Effects of Methanol and Ethanol on the Oxidation of a Primary Reference Fuel Blend in a Motored Engine

1995-02-01
950682
This experimental study was conducted in a motored research engine to investigate the effect of blending methanol and ethanol on hydrocarbon oxidation and autoignition. An 87 octane mixture of primary reference fuels, 87 PRF, was blended with small percentages of the alcohols to yield a constant gravimetric oxygen percentage in the fuel. The stoichiometric fuel mixtures and neat methanol and ethanol were tested in a modified single-cylinder engine at a compression ratio of 8.2. Supercharging and heating of the intake charge were used to control reactivity. The inlet gas temperature was increased from 325 K to the point of autoignition or the maximum achievable temperature of 500 K. Exhaust carbon monoxide levels and in-cylinder pressure histories were monitored in order to determine and quantify reactivity.
Technical Paper

The Effect of Active Species in Internal EGR on Preignition Reactivity and on Reducing UHC and CO Emissions in Homogeneous Charge Engines

2003-05-19
2003-01-1831
This paper examines the similarity in the pre-ignition chemistry and reactivity behavior of two and four-stoke homogenous charge engines, analyzes the sources of UHC and CO, and describes an approach with the potential to substantially reduce UHC and CO in these systems. The approach is based on experiments on a two-stroke engine at no load conditions and on a four-stroke engine both with high levels of internal exhaust gas recirculation (EGR). By increasing internal EGR in an unloaded spark ignited two-stroke engine, UHC was reduced from 7800 ppm to 3000 ppm, CO decreased from 3% to 0.2%, and cyclic variability was diminished. These results demonstrate that stable engine operation can be obtained with additional internal EGR. Similar improvements were obtained at stoichiometric and lean conditions. Further experiments and modeling indicate that the main source of UHC and CO emissions is the fuel trapped in crevices.
Technical Paper

The Autoignition of n-Pentane in a Non-Fired Single Cylinder Engine

1993-10-01
932756
The detailed chemical reactions leading to autoignition of n-pentane are investigated in this study. A single-cylinder engine operating in a nonfired mode was used. The engine is supercharged and the temperature of the inlet fuel/air mixture is varied. By increasing the inlet manifold temperature, at a given inlet manifold pressure, the fuel/air mixture can be made to undergo autoignition. In-cylinder pressure and temperature profiles were measured. Gas samples from the combustion chamber were extracted and analyzed using gas chromatography techniques. The detailed chemical reaction mechanisms explaining the products from the different stages of the fuel oxidation process are presented. It is speculated that the generation of OH radicals from the peroxide (QOOH) decomposition is responsible for the autoignition of the n-pentane fuel/air mixture.
Technical Paper

Some Observations on the Effects of EGR, Oxygen Concentration, and Engine Speed on the Homogeneous Charge Combustion of n-Heptane

2004-06-08
2004-01-1905
NOx and soot emissions remain critical issues in diesel engines. One method to address these problems is to achieve homogeneous combustion at lower peak temperatures - the goal of research on controlled autoignition. In this paper n-heptane is used to represent a large hydrocarbon fuel and some of the effects of internal and external EGR, oxygen concentration, and engine speed on its combustion have been examined through simulation and experiment. Simulations were conducted using our existing skeletal chemical kinetic model, which combines the chemistry of the low, intermediate, and high temperature regimes. Experiments were carried out in a single cylinder, four-stroke, air cooled engine and a single cylinder, two stroke, water cooled engine. In the four-stroke engine experiments the effects of EGR were examined using heated N2 addition as a surrogate for external EGR and engine modifications to increase internal EGR.
Technical Paper

Predictions of Cyclic Variability in an SI Engine and Comparisons with Experimental Data

1991-10-01
912345
An investigation of cyclic variability in a spark ignition engine is reported. Specifically, the predictions of an engine code have been compared with experimental data obtained using a well-characterized SI engine. The engine used for the experimental work and modeled in the code is the single cylinder research engine developed at Sandia National Laboratories and now operating at Drexel University. The data used for comparison were cylinder pressure histories for 110 engine cycles gathered during operation at a single engine operating condition. The code allows the various factors that could influence cyclic variability to be examined independently. Specifically, a model has been used to independently examine the effects of variations in equivalence ratio and of the turbulence intensity on cycle-to-cycle variations in the peak cylinder pressure, the crankangle of occurrence of peak pressure, the flame development angle, and the rapid burning angle.
Technical Paper

Prediction of Pre-ignition Reactivity and Ignition Delay for HCCI Using a Reduced Chemical Kinetic Model

2001-03-05
2001-01-1025
Homogeneous Charge Compression Ignition (HCCI) engines have the possibility of low NOx and particulate emissions and high fuel efficiencies. In HCCI the oxidation chemistry determines the auto-ignition timing, the heat release rate, the reaction intermediates, and the ultimate products of combustion. This paper reports an initial effort to apply our reduced chemical kinetic model to HCCI processes. The model was developed to study the pre-ignition characteristics (pre-ignition heat release and start of ignition) of primary reference fuels (PRF) and includes 29 reactions and 20 active species. The only modifications to the model were to make the proscribed adjustments to the fuel specific rate constants, and to enhance the H2O2 decomposition rate to agree with published data.
Technical Paper

Potential of Thermal Stratification and Combustion Retard for Reducing Pressure-Rise Rates in HCCI Engines, Based on Multi-Zone Modeling and Experiments

2005-04-11
2005-01-0113
This work investigates the potential of in-cylinder thermal stratification for reducing the pressure-rise rate in HCCI engines, and the coupling between thermal stratification and combustion-phasing retard. A combination of computational and experimental results is employed. The computations were conducted using both a custom multi-zone version and the standard single-zone version of the Senkin application of the CHEMKIN III kinetics-rate code, and kinetic mechanisms for iso-octane. This study shows that the potential for extending the high-load operating limit by adjusting the thermal stratification is very large. With appropriate stratification, even a stoichiometric charge can be combusted with low pressure-rise rates, giving an output of 16 bar IMEPg for naturally aspirated operation. For more typical HCCI fueling rates (ϕ = 0.38 - 0.45), the optimal charge-temperature distribution is found to depend on both the amount of fuel and the combustion phasing.
Technical Paper

Post Combustion Hydrocarbon Oxidation and Exhaust Emissions - Neat Fuel and Fuel Blend Studies

1998-05-04
981456
Inevitably a fraction of the hydrocarbon fuel in spark ignition engines escapes in-cylinder combustion and flows out with the burned products. Post combustion oxidation in the cylinder and exhaust port may consume a part of this fuel and plays an important role in determining exhaust emission levels. This paper presents results from experiments designed to identify the factors that control post-combustion oxidation. Regulated exhaust components and detailed hydrocarbon species were measured using seven neat hydrocarbons and four blends as fuel. The fuels were selected to compare the relative rates of mixing and chemical kinetics. The results indicate that exhaust temperature, diffusion rates and fuel kinetics each play a complicated role in determining emission levels.
Technical Paper

Modeling Iso-octane HCCI Using CFD with Multi-Zone Detailed Chemistry; Comparison to Detailed Speciation Data Over a Range of Lean Equivalence Ratios

2008-04-14
2008-01-0047
Multi-zone CFD simulations with detailed kinetics were used to model iso-octane HCCI experiments performed on a single-cylinder research engine. The modeling goals were to validate the method (multi-zone combustion modeling) and the reaction mechanism (LLNL 857 species iso-octane) by comparing model results to detailed exhaust speciation data, which was obtained with gas chromatography. The model is compared to experiments run at 1200 RPM and 1.35 bar boost pressure over an equivalence ratio range from 0.08 to 0.28. Fuel was introduced far upstream to ensure fuel and air homogeneity prior to entering the 13.8:1 compression ratio, shallow-bowl combustion chamber of this 4-stroke engine. The CFD grid incorporated a very detailed representation of the crevices, including the top-land ring crevice and head-gasket crevice. The ring crevice is resolved all the way into the ring pocket volume. The detailed grid was required to capture regions where emission species are formed and retained.
Technical Paper

Fuel and Diluent Effects on Diesel Odor Species in a Premixed Flat Flame

1986-02-01
860221
As a group of diesel engine exhaust products, oxygenated hydrocarbons have been found to be responsible for the characteristic diesel odor. Contadictory effects of fuel properties on the emission levels of these species in both diesel engines and spray burner experiments have been reported. In the present study, a prevaporized premixed flat flame was used to investigate the fuel and diluent effects on these species. The results suggest a definite fuel effect on formation rates of oxygenates. In general, aromatic fuels produced higher concentration levels of oxygenates than paraffins, and the oxygenate concentration increases as the carbon number increases for the straight chain compounds. GC/MS analysis of the oxygenate fraction of the samples indicated a similar oxidation mechanism for all alkanes. Branching of alkanes was found to lead to more cyclization, but not always higher oxygenate levels.
Technical Paper

Effects of DTBP on the HCCI Combustion Characteristics of SI Primary Reference Fuels

2005-10-24
2005-01-3740
One option for ignition control of Homogeneous Charge Compression Ignition (HCCI) engines is to use small amounts of ignition-enhancing additives to alter the ignition properties. Di-tertiary Butyl Peroxide (DTBP) is one such additive and it has been suggested as a cetane improver in diesel engines. In this study, the effects of DTBP on spark ignition (SI) primary reference fuels (PRFs, n-heptane and iso-octane) and their blends (PRF20, PRF50, PRF63, PRF87 and PRF92) were investigated during HCCI engine operation. Experiments were run in a single cylinder CFR research engine for three inlet temperatures (410, 450 and 500 K) and several equivalence ratios (0.28 - 0.57) at a constant speed of 800 rpm and a compression ratio of 16.0. Experimental results show that ignition delay time, cycle to cycle variation, and stable operating range were all improved with the addition of less than 2.5% DTBP by volume.
Journal Article

Detailed HCCI Exhaust Speciation and the Sources of Hydrocarbon and Oxygenated Hydrocarbon Emissions

2008-04-14
2008-01-0053
Detailed exhaust speciation measurements were made on an HCCI engine fueled with iso-octane over a range of fueling rates, and over a range of fuel-stratification levels. Fully premixed fueling was used for the fueling sweep. This sweep extended from a fuel/air equivalence ratio (ϕ) of 0.28, which is sufficiently high to achieve a combustion efficiency of 96%, down to a below-idle fueling rate of ϕ = 0.08, with a combustion efficiency of only 55%. The stratification sweep was conducted at an idle fueling rate, using an 8-hole GDI injector to vary stratification from well-mixed conditions for an early start of injection (SOI) (40°CA) to highly stratified conditions for an SOI well up the compression stroke (325°CA, 35°bTDC-compression). The engine speed was 1200 rpm. At each operating condition, exhaust samples were collected and analyzed by GC-FID for the C1 and C2 hydrocarbon (HC) species and by GC-MS for all other species except formaldehyde and acetaldehyde.
Technical Paper

Destruction of Oxygenate/Odor Formation in a High Temperature Flat Flame Burner

1983-10-31
831737
As a group of diesel engine exhaust products, oxygenates have been found primarily responsible for the characteristic exhaust odor. In diesel combustion systems, it is thought that oxygenates are produced in too-lean-to-burn regions and are subsequently destroyed in the high temperature flame regions. In order to study these destruction processes, n-dodecane/oxygen/inert gas mixtures have been burned in a high temperature premixed, prevaporized, one-dimensional, laminar flat flame burner. The rate of decay of oxygenates along the axis of the burner in the reaction zone and in the post flame zone has been measured and followed. An empirical relationship describing the rate of decay of oxygenates as rate = −k(T) [oxygenates]a[O2]b has been derived. The reaction orders, a and b, have been found to be 0.91 ± 0.06 and 1.44 ± 0.05, respectively. The rate constant has Arrhenius parameters E = 23.95 ± 5.77 kcal/mol and log10 A = 10.98 ± 1.56, where the units for A are discussed in the text.
Journal Article

Analysis of Gasoline Negative-Valve-Overlap Fueling via Dump Sampling

2014-04-01
2014-01-1273
Negative valve overlap (NVO) is an operating mode that enables efficient, low-temperature gasoline combustion in automotive engines. In addition to retaining a large fraction of residuals, NVO operation also enables partial fuel injection during the recompression period as a means of enhancing and controlling main combustion. Thermal effects of NVO fueling on main combustion are well understood, but chemical effects of the products of NVO reactions remain uncertain. To address this topic, we have fabricated a dump valve that extracts a large fraction of cylinder charge at intake valve closing (IVC), yielding a representative sample of NVO products mixed with intake air. Sample composition is determined by gas chromatography. Results from a sweep of NVO start-of-injection (SOI) timings show that concentrations of the reactive species acetylene and hydrogen rise to several hundred parts-per-million as NVO SOI is retarded toward top center of NVO.
Technical Paper

A Study on the Application of a Reduced Chemical Reaction Model to Motored Engines for Heat Release Prediction

1992-10-01
922328
We investigated the ability of a reduced chemical kinetic model of 18 reactions and 13 active species to predict the heat release for a blend of primary reference fuels with octane rating 63 in a motored research engine. Given the initial fuel-air mixture concentration and temperature, the chemical kinetic model is used to predict temperature, heat release and species concentrations as a function of time or crank angle by integrating the coupled rate and energy equations. For comparison, we independently calculated heat release from measured pressure data using a standard thermodynamic model.
X