Refine Your Search

Search Results

Technical Paper

Thermal Reduction of NOx in a Double Compression Expansion Engine by Injection of AAS 25 and AUS 32 in the Exhaust Gases

2019-01-15
2019-01-0045
The double compression expansion engine (DCEE) is a promising concept for high engine efficiency while fulfilling the most stringent European and US emission legislation. The complete thermodynamic cycle of the engine is split among several cylinders. Combustion of fuel occurs in the combustion cylinder and in the expansion cylinder the exhaust gases are over expanded to obtain high efficiency. A high-pressure tank is installed between these two cylinders for after-treatment purposes. One proposal is to utilize thermal reduction of nitrogen oxides (NOx) in the high-pressure tank as exhaust temperatures can be sufficiently high (above 700 °C) for the selective non-catalytic reduction (SNCR) reactions to occur. The exhaust gas residence time at these elevated exhaust temperatures is also long enough for the chemical reactions, as the volume of the high-pressure tank is substantially larger than the volume of the combustion cylinders.
Technical Paper

The Potential of SNCR Based NOx Reduction in a Double Compression Expansion Engine

2018-04-03
2018-01-1128
Selective Non-Catalytic Reduction (SNCR), used to reduce the emissions of nitrogen oxides (NOx), has been a well-established technology in the power plant industry for several decades. The SNCR technique is an aftertreatment strategy based on thermal reduction of NOx at high temperatures. In the compression ignition engine application, the technology has not been applicable due to low exhaust temperatures, which makes the SCR (Selective Catalytic Reduction) system essential for efficient nitrogen oxide reduction to fulfill the environment legislation. For a general Double Compression Expansion Engine (DCEE) the complete expansion cycle is split in two separate cycles, i.e. the engine is a split cycle engine. In the first cylinder the combustion occurs and in the second stage the combustion gas is introduced and further expanded in a low-pressure expansion cylinder. The combustion cylinder is connected with the expansion cylinder through a large insulated high-pressure tank.
Technical Paper

Studying the potential efficiency of low heat rejection HCCI engines with a Stochastic Reactor Model

2009-09-13
2009-24-0032
The main losses in internal combustion engines are the heat losses to the cylinder walls and to the exhaust gases. Adiabatic, or low heat rejection engines, have received interest and been studied in several periods in history. Typically, however, these attempts have had to be abandoned when problems with lubrication and overheating components could not be solved satisfactorily. The latest years have seen the emerging of low temperature combustion in engines as well as computational powers that provide new options for highly efficient engines with low heat rejection. Stochastic Reactor Models (SRM) are highly efficient in modeling the kinetics decided low temperature combustion in HCCI and PPC engines. Containing the means to define the variations within the cylinder while employing detailed chemistry, micro mixing and heat transfer modeling, the interaction between heat transfer, exhaust gas energy and the combustion process can be studied with the SRM.
Technical Paper

Simulation of System Brake Efficiency in a Double Compression-Expansion Engine-Concept (DCEE) Based on Experimental Combustion Data

2019-01-15
2019-01-0073
The double compression-expansion engine concepts (DCEE) are split-cycle concepts where the compression, combustion, expansion and gas exchange strokes occur in two or more different cylinders. Previous simulation studies reveal there is a potential to improve brake efficiency with these engine concepts due to improved thermodynamic and mechanical efficiencies. As a continuation of this project this paper studies an alternative layout of the DCEE-concept. The concept studied in this paper has three different cylinders, a compression, a combustion and an expansion cylinder. Overall system indicated and brake efficiency estimations were based on both engine experiments and simulations. The engine experiments were carried out at 10 different operating points and 5 fuelling rates (between 98.2 and 310.4 mg/cycle injection mass) at an engine speed of 1200 rpm. The inlet manifold pressure was varied between 3 and 5 bar.
Technical Paper

Pressure Sensitivity of HCCI Auto-Ignition Temperature for Gasoline Surrogate Fuels

2013-04-08
2013-01-1669
An index to relate fuel properties to HCCI auto-ignition would be valuable to predict the performance of fuels in HCCI engines from their properties and composition. The indices for SI engines, the Research Octane Number (RON) and Motor Octane Number (MON) are known to be insufficient to explain the behavior of oxygenated fuels in an HCCI engine. One way to characterize a fuel is to use the Auto-Ignition Temperature (AIT). The AIT can be extracted from the pressure trace. Another potentially interesting parameter is the amount of Low Temperature Heat Release (LTHR) that is closely connected to the ignition properties of the fuel. A systematic study of fuels consisting of gasoline surrogate components of n-heptane, iso-octane, toluene, and ethanol was made. 21 fuels were prepared with RON values ranging from 67 to 97.
Technical Paper

Potential ESC Performance of a Multi-Cylinder Heavy Duty PPC Truck Engine: System Simulations based on Single Cylinder Experiments

2013-04-08
2013-01-0268
Partially Premixed Combustion (PPC) has demonstrated remarkably high gross indicated engine efficiencies combined with very low engine out emissions. The PPC concept relies on heavy boosting combined with dilution and partial premixing of the charge. The latter is usually achieved with high EGR rates and a separation of the fuel injection from the combustion event. Since more of the produced heat is used for work rather than being wasted with the exhaust gases, concerns have been raised regarding whether it is possible to achieve the required boosting pressures and EGR rates throughout the typical operating regime of a heavy duty (HD) diesel engine through turbocharging only. If supercharging would be required its cost in terms of work would mean a substantial loss of the gain in brake efficiencies of the PPC engine over current HD diesel engines.
Technical Paper

Multi Cylinder Partially Premixed Combustion Performance Using Commercial Light-Duty Engine Hardware

2014-10-13
2014-01-2680
This work investigates the performance potential of an engine running with partially premixed combustion (PPC) using commercial diesel engine hardware. The engine was a 2.01 SAAB (GM) VGT turbocharged diesel engine and three different fuels were run - RON 70 gasoline, RON 95 Gasoline and MK1 diesel. With the standard hardware an operating range for PPC from idle at 1000 rpm up to a peak load of 1000 kPa IMEPnet at 3000 rpm while maintaining a peak pressure rise rate (PPRR) below 7 bar/CAD was possible with either RON 70 gasoline and MK1 diesel. Relaxing the PPRR requirements, a peak load of 1800 kPa was possible, limited by the standard boosting system. With RON 95 gasoline it was not possible to operate the engine below 400 kPa. Low pressure EGR routing was beneficial for efficiency and combined with a split injection strategy using the maximum possible injection pressure of 1450 bar a peak gross indicated efficiency of above 51% was recorded.
Journal Article

Laser-Induced Phosphorescence and the Impact of Phosphor Coating Thickness on Crank-Angle Resolved Cylinder Wall Temperatures

2011-04-12
2011-01-1292
In order to further improve the energy conversion efficiency in reciprocating engines, detailed knowledge about the involved processes is required. One major loss source in internal combustion engines is heat loss through the cylinder walls. In order to increase the understanding of heat transfer processes and to validate and generate new heat transfer correlation models it is desirable, or even necessary, to have crank-angle resolved data on in-cylinder wall temperature. Laser-Induced Phosphorescence has proved to be a useful tool for surface thermometry also in such harsh environments as running engines. However, the ceramic structure of most phosphor coatings might introduce an error, due to its thermal insulation properties, when being exposed to rapidly changing temperatures. In this article the measurement technique is evaluated concerning the impact from the thickness of the phosphorescent layer on the measured temperature.
Technical Paper

Heat Loss Analysis for Various Piston Geometries in a Heavy-Duty Methanol PPC Engine

2018-09-10
2018-01-1726
Partially premixed combustion (PPC) in internal combustion engine as a low temperature combustion strategy has shown great potential to achieve high thermodynamic efficiency. Methanol due to its unique properties is considered as a preferable PPC engine fuel. The injection timing to achieve methanol PPC conditions should be set very close to TDC, allowing to utilize spray-bowl interaction to further improve combustion process in terms of emissions and heat losses. In this study CFD simulations are performed to investigate spray-bowl interaction for a number of different piston designs and its impact on the heat transfer and the overall piston performance. The validation case is based on a single cylinder heavy-duty Scania D13 engine with a compression ratio 15. The operation point is set to low load 5.42 IMEPg bar with SOI -3 aTDC.
Technical Paper

Experimental Comparison of Heat Losses in Stepped-Bowl and Re-Entrant Combustion Chambers in a Light Duty Diesel Engine

2016-04-05
2016-01-0732
Heat loss is one of the greatest energy losses in engines. More than half of the heat is lost to cooling media and exhaust losses, and they thus dominate the internal combustion engine energy balance. Complex processes affect heat loss to the cylinder walls, including gas motion, spray-wall interaction and turbulence levels. The aim of this work was to experimentally compare the heat transfer characteristics of a stepped-bowl piston geometry to a conventional re-entrant diesel bowl studied previously and here used as the baseline geometry. The stepped-bowl geometry features a low surface-to-volume ratio compared to the baseline bowl, which is considered beneficial for low heat losses. Speed, load, injection pressure, swirl level, EGR rate and air/fuel ratio (λ) were varied in a multi-cylinder light duty engine operated in conventional diesel combustion (CDC) mode.
Journal Article

Exhaust PM Emissions Analysis of Alcohol Fueled Heavy-Duty Engine Utilizing PPC

2016-10-17
2016-01-2288
The focus has recently been directed towards the engine out soot from Diesel engines. Running an engine in PPC (Partially Premixed Combustion) mode has a proven tendency of reducing these emissions significantly. In addition to combustion strategy, several studies have suggested that using alcohol fuels aid in reducing soot emissions to ultra-low levels. This study analyzes and compares the characteristics of PM emissions from naphtha gasoline PPC, ethanol PPC, methanol PPC and methanol diffusion combustion in terms of soot mass concentration, number concentration and particle size distribution in a single cylinder Scania D13 engine, while varying the intake O2. Intake temperature and injection pressure sweeps were also conducted. The fuels emitting the highest mass concentration of particles (Micro Soot Sensor) were gasoline and methanol followed by ethanol. The two alcohols tested emitted nucleation mode particles only, whereas gasoline emitted accumulation mode particles as well.
Technical Paper

Effects of Multiple Injectors on Spray Characteristics and Efficiency in Internal Combustion Engines

2021-04-06
2021-01-0501
High-pressure internal combustion engines promise high efficiency, but a proper injection strategy to minimize heat losses and pollutant emissions remain a challenge. Previous studies have concluded that two injectors, placed at the piston bowl's rim, simultaneously improve the mixing and reduce the heat losses. The two-injector configuration further improves air utilization while keeping hot zones away from the cylinder walls. This study investigates how the two-injector concept delivers even higher efficiency by providing additional control of spray -and injection angles. Three-dimensional Reynolds-averaged Navier-Stokes simulations examined several umbrella angles, spray-to-spray angles, and injection orientations by comparing the two-injector cases with a reference one-injector case. The study focused on heat transfer reduction, where the two-injector approach reduces the heat transfer losses by up to 14.3 % compared to the reference case.
Technical Paper

Double Compression Expansion Engine: A Parametric Study on a High-Efficiency Engine Concept

2018-04-03
2018-01-0890
The Double compression expansion engine (DCEE) concept has exhibited a potential for achieving high brake thermal efficiencies (BTE). The effect of different engine components on system efficiency was evaluated in this work using GT Power simulations. A parametric study on piston insulation, convection heat transfer multiplier, expander head insulation, insulation of connecting pipes, ports and tanks, and the expander intake valve lift profiles was conducted to understand the critical parameters that affected engine efficiency. The simulations were constrained to a constant peak cylinder pressure of 300 bar, and a fixed combustion phasing. The results from this study would be useful in making technology choices that will help realise the potential of this engine concept.
Technical Paper

Double Compression Expansion Engine Concepts: Efficiency Analysis over a Load Range

2018-04-03
2018-01-0886
Double Compression Expansion Engine (DCEE) concepts are split-cycle concepts where the main target is to improve brake efficiency. Previous simulations work [1] suggests these concepts has a potential to significantly improve brake efficiency relative to contemporary engines. However, a high peak efficiency alone might be of limited value. This is because a vehicle must be able to operate in different conditions where the engine load requirements changes significantly. An engine’s ability to deliver high efficiency at the most frequently used load conditions is more important than peak efficiency in a rarely used load condition. The simulations done in this paper studies the efficiency at low, mid and full load for a DCEE concept proposal. Two load control strategies have been used, lambda and Miller (late intake valve closing) strategies. Also, effects from charge air cooling has also been studied.
Journal Article

Double Compression Expansion Engine Concepts: A Path to High Efficiency

2015-04-14
2015-01-1260
Internal combustion engine (ICE) fuel efficiency is a balance between good indicated efficiency and mechanical efficiency. High indicated efficiency is reached with a very diluted air/fuel-mixture and high load resulting in high peak cylinder pressure (PCP). On the other hand, high mechanical efficiency is obtained with very low peak cylinder pressure as the piston rings and bearings can be made with less friction. This paper presents studies of a combustion engine which consists of a two stage compression and expansion cycle. By splitting the engine into two different cycles, high-pressure (HP) and low-pressure (LP) cycles respectively, it is possible to reach high levels of both indicated and mechanical efficiency simultaneously. The HP cycle is designed similar to today's turbo-charged diesel engine but with an even higher boost pressure, resulting in high PCP. To cope with high PCP, the engine needs to be rigid.
Technical Paper

Demonstrating a SI-HCCI-SI Mode Change on a Volvo 5-Cylinder Electronic Valve Control Engine

2003-03-03
2003-01-0753
Operating an engine in homogeneous charge compression ignition (HCCI) mode requires the air fuel mixture to be very lean or highly diluted with residuals. This is in order to slow the kinetics down and to avoid too rapid heat release. Consequently, the operational window for the engine in HCCI mode is not the same as for the engine operating in spark ignited (SI) mode. Homogeneous charge compression ignition engine mode, in this study, is accomplished by trapping residual mass using variable valve timing. With the residual trapping method, the engine cannot be started in HCCI mode and due to the dilution, the engine in HCCI mode can only be operated in the part - load regime. Hence, a mode change between spark ignited and HCCI modes, and vice versa is required. This study reports the development of a mode change strategy for a single cylinder camless engine, and its successful implementation in a camless multi cylinder engine.
Technical Paper

Comparison of Fuel Effects on Low Temperature Reactions in PPC and HCCI Combustion

2014-10-13
2014-01-2679
The current research focus on fuel effects on low temperature reactions (LTR) in Homogeneous Charge Compression Ignition (HCCI) and Partially Premixed Combustion (PPC). LTR result in a first stage of heat release with decreasing reaction rate at increasing temperature. This makes LTR important for the onset of the main combustion. However, auto-ignition is also affected by other parameters and all fuel does not exhibit LTR. Moreover, the LTR does not only depend on fuel type but also on engine conditions. This research aims to understand how fuel composition affects LTR in each type of combustion mode and to determine the relative importance of chemical and physical fuel properties for PPC. For HCCI the chemical properties are expected to dominate over physical properties, since vaporization and mixing are completed far before start of combustion.
Journal Article

Combustion Stratification with Partially Premixed Combustion, PPC, using NVO and Split Injection in a LD - Diesel Engine

2014-10-13
2014-01-2677
Partially Premixed Combustion (PPC) is used to meet the increasing demands of emission legislation and to improve fuel efficiency. PPC with gasoline fuels have the advantage of a longer premixed duration of fuel/air mixture which prevents soot formation at higher loads. The objective of this paper is to investigate the degree of stratification for low load (towards idle) engine conditions using different injection strategies and negative valve overlap (NVO). The question is, how homogenous or stratified is the partially premixed combustion (PPC) for a given setting of NVO and fuel injection strategy. In this work PRF 55 has been used as PPC fuel. The experimental engine is a light duty (LD) diesel engine that has been modified to single cylinder operation to provide optical access into the combustion chamber, equipped with a fully variable valve train system. Hot residual gases were trapped by using NVO to dilute the cylinder mixture.
Technical Paper

CFD Investigation on Injection Strategy and Gasoline Quality Impact on In-Cylinder Temperature Distribution and Heat Transfer in PPC

2013-09-08
2013-24-0009
Recently, internal combustion engine design has been moving towards downsized, more efficient engines. One key in designing a more efficient engine is the control of heat losses, i.e., improvements of the thermodynamic cycle. Therefore, there is increasing interest in examining and documenting the heat transfer process of an internal combustion engine. A heavy-duty diesel engine was modeled with a commercial CFD code in order to examine the effects of two different gasoline fuels, and the injection strategy used, on heat transfer within the engine cylinder in a partially premixed combustion (PPC) mode. The investigation on the fuel quality and injection strategy indicates that the introduction of a pilot injection is more beneficial in order to lower heat transfer, than adjusting the fuel quality. This is due to reduced wall exposure to higher temperature gases and more equally distributed heat losses in the combustion chamber.
Technical Paper

A Study on the Effect of Elevated Coolant Temperatures on HD Engines

2017-10-08
2017-01-2223
In recent years, stricter regulations on emissions and higher demands for more fuel efficient vehicles have led to a greater focus on increasing the efficiency of the internal combustion engine. Nowadays, there is increasing interest in the recovery of waste heat from different engine sources such as the coolant and exhaust gases using, for example, a Rankine cycle. In diesel engines 15% to 30% of the energy from the fuel can be lost to the coolant and hence, does not contribute to producing work on the piston. This paper looks at reducing the heat losses to the coolant by increasing coolant temperatures within a single cylinder Scania D13 engine and studying the effects of this on the energy balance within the engine as well as the combustion characteristics. To do this, a GT Power model was first validated against experimental data from the engine.
X