Refine Your Search

Topic

Author

Affiliation

Search Results

Viewing 1 to 20 of 27405
Technical Paper

“U” Bolt Torque Influence over Leaf Springs

2014-05-07
2014-36-0024
”U” bolts are fixing elements and they are used to clamp an elastic joint. From the past, they still looking as an old design and unfortunately, suspension engineers are not specialists in fasteners and elastic joints. That is why we will show important assumptions and concepts to design and specifications this clamp element “U” bolt and its influence over leaf-springs. Currently, “U” bolt is used to clamp an elastic or elastic-plastic joint of heavy duty suspension, formed by leaf-spring, axle, spring pad, “U” bolt plate. This kind of suspension is typically used to trucks, buses and trailers. We are wondering, which one important assumption that an engineer must be careful when designs a new suspension changing from old designs to an updated technology. We provide a theoretical analysis and a FEA analysis to compare torque efficacy x leaf-spring reactions and what are effects this relationship can cause in a suspension.
Technical Paper

“The Producers” New Row-Crop Tractors From John Deere

1982-02-01
821062
A line of five new row-crop tractors is being introduced by John Deere with innovative features including a 15-speed full power shift transmission, a high capacity, highly-maneuverable full-time mechanical front-wheel drive and micro-processor controlled instrumentation. In addition, the tractors have increased power, improved fuel economy, greater hydraulic power, improved hitch sensing, improved operator controls, lower sound levels, and revised styling. This paper documents the design and development of these new John Deere row-crop tractors.
Technical Paper

“The Middle Man”

1979-02-01
790539
The “middle man” in the construction machinery business is the dealer who sells and services the products designed and built by the engineers and scientists of the industry. Quality is a foremost concern of the dealer and second, only to quality, is the need for cost control.
Technical Paper

“The Creation, Development and Implementation of a Lean Systems Course at Oakland University, Rochester, MI”

2005-04-11
2005-01-1798
Countless articles and publications3,4,5 have documented and proven the efficacy, benefits and value of operating within a lean system. Furthermore, there exists common agreement amongst leading organizations successfully implementing a lean system that in order to do so it must take into consideration the entire enterprise, that is, from supplier to customer and everything in between6. One of the core issues this paper addresses is when the optimal time is to train and educate the people who currently have, or will have, influence over the ‘enterprise’.
Technical Paper

“The Accuracy of Speed Captured by Commercial Vehicle Event Data Recorders”

2004-03-08
2004-01-1199
Many newer commercial vehicles have an event data recorder (EDR) that can record pre-event and post-event speeds. The EDR is incorporated into the engines electronic control module (ECM). In this study, the accuracy of the ECM-reported speed was tested during acceleration, gear shifting and braking at speeds between 16 and 88 km/h (10 to 55mph). The ECM-reported speed was compared to the speed measured by a calibrated optical 5th wheel. The results showed that the accuracy of the ECM-reported speed matched closely during acceleration, cycled to periods of under-reporting the speed during hard braking due to the ABS brake function, briefly under-reporting the speed after letting off the throttle for braking or gear shift and briefly over-reporting the speed near the end of a gear shift phase. This study also looked at calibration factors of the ECM and their effect on the ECM-reported speed.
Technical Paper

“Targeting Consumer Needs in the Perfect Storm: Changing the Automotive Lifestyle”

2008-10-20
2008-21-0038
The intersection of changing lifestyles and evolving transportation needs finds smart USA well positioned for launch in 2008 during one of the most competitive periods in U.S. automotive history. In a zero sum market with new global entrants competing for single points of share, where quality levels have been redefined and fractions of points separate the best from the challengers, lifestyle awareness, innovation and product positioning become the differentiators. Simply adding features has left some with hefty investments and confused consumers. Bigger is not always better. More is not always desirable. The real opportunity for new entrants to the US market may be defined within niche markets where changing lifestyles allow for the emergence of new segments. Today, smart USA has surfaced as a clear example of right product, right place, right time.
Technical Paper

“STATE OF THE ART” REPORT ON WINTERIZATION OF CONSTRUCTION EQUIPMENT

1964-01-01
640064
As increasing populations set demands for the abundant natural resources of the colder regions, the complex industrial machines of American Industry are expected to build the new railroads, roads, cities, mines, power sources, airports and factories, and operate these activities year round. This paper reviews the basic problems of “winterization” and the design practices, materials and components used with varying effectiveness in “winterizing” construction and associated equipment for use in moderate and extreme cold geographical areas. Several new charts are included which offer design temperature data for the northern United States, Canada, Alaska, Greenland, as well as average January isotherms around the earth. The authors are members of CIMTC Subcommittee XV, “Environment”.
Technical Paper

“Rubber Coupling” at a 4×4 Transmition System

2003-11-18
2003-01-3684
There are many different vibration sources in a car. Engine, gears, road roughness, impacts against the wheels cause vibration and sound that can decrease the parts and the car durability as well as affect drivability, safety and passengers and community comfort. In 4×4 cars, some extra vibration sources are the parts responsible for transmitting the torque and power to the rear wheels. Each of them has their own vibration modes, excited mostly by its imbalance or by the second order engine vibration. The engine vibration is a very well known phenomena and the rear driveshaft is designed not to have any vibration mode in the range of frequencies that the engine works or its second order. The imbalance of a driveshaft is also a design requirement. That means, the acceptable imbalance of the driveshaft is limited to a maximum value.
Technical Paper

“Return to Nascar” Dodge NCTS History

2002-12-02
2002-01-3353
Dodge wanted to promote the new Dodge Ram 1500 pick-up truck and regain a presence in NASCAR and was looking for a venue that would accommodate this presence. NASCAR launched the NASCAR Craftsman Truck Series (NCTS) in 1995 and Dodge joined the series. This paper will cover the history of Dodge Motorsports Engineering presence in this series. The engineering objective was to develop an organization that would meet the corporate goals. The initial problem was that Dodge hadn't participated in a NASCAR series since 1978 and had no recent experience. The conclusion was that Dodge Motorsports Engineering could be competitive in NASCAR series racing.
Technical Paper

“Projection-by-Projection” Approach: A Spectral Method for Multiaxial Random Fatigue

2014-04-01
2014-01-0924
This paper presents a fatigue criterion based on stress invariants for the frequency-based analysis of multiaxial random stresses. The criterion, named “Projection-by-Projection” (PbP) spectral method, is a frequency-based reformulation of its time-domain definition. In the time domain PbP method, a random stress path is first projected along the axes of a principal reference frame in the deviatoric space, thus defining a set of uniaxial random stress projections. In the frequency-domain approach, the damage of stress projections is estimated from the stress PSD matrix. Fatigue damage of the multiaxial stress is next calculated by summing up the fatigue damage of every stress projection. The criterion is calibrated on fatigue strength properties for axial and torsion loading. The calculated damage is shown to also depend on the relative ratio of hydrostatic to deviatoric stress components.
Technical Paper

“Personal Integrity” and Man-Machine Integration

1982-02-01
821348
A sense of “personal integrity” blocks pilot use of new information about how he thinks. Research on human performance under stress done over the past fifty years indicates increased rigidity and regression to earlier learned behavior in high stress, and in low Stress a shift in attention to any domestic situation or on the job controversy which is of higher stress than that of the job at hand, all without the pilot's knowledge. Informal surveys of commercial pilot training and commercial pilot attitudes towards these studies indicate that the study findings directly confront learned cultural responses. Pilot and trainer reactions prevent the information from being adequately investigated or formally taught. The findings are not written into training manuals and pilots who are informally given the information do not have adequate access to the knowledge when it is needed.
Technical Paper

“Optimization” of Lower Deck Cargo Systems

1988-05-01
880973
The ability to carry cargo efficiently in passenger aircraft has influenced airline economics to the point that optimisation of the freight capacity is mandatory. This document discusses the alternative loading possibilities in defined Lover Deck Compartments and their doors to cater for current and future trends in ULD dimensions. As a result items for study centred on: 1) Optimisation of the available volumes Freight capacity resulting in the selection of “Pallets”-doors for both the Forward and AFT Compartments. Flexibility to meet Freight and Baggage requirements. Possible load arrangements to optimize aircraft C of G 2) Bulk Cargo Compartment Additional LD3 Container position in AFT/Bulk compartment to cater for an uneven number of Baggage container, allowing the carriage of an additional pallet. What is regarded as an optimum is presented.
Technical Paper

“Motion in FEA”: An Innovative Approach for More Physical and More Accurate Vehicle Dynamics Simulation

2012-04-16
2012-01-0762
Vehicle dynamics is a discipline of mechanical engineering that benefited of significant improvements thanks to the progress of computational engineering. Vehicle dynamics engineers are using CAE for the development of a vehicle with MBS and FEA. The concurrent use of these two technologies is a standard in the automotive industry. However the current simulation process is not fully efficient because local geometrical and material nonlinearities are not accurately modeled in classical MBS software. This paper introduces a methodology for vehicle dynamics simulation integrating MBS capabilities in one single nonlinear FEA environment enabling an accurate modeling of nonlinearity in vehicles.
Technical Paper

“MBE 4000-A New Engine for the US Class 8 Truck Market”

2000-12-04
2000-01-3457
Due to ever soaring fuel costs and even more stringent emission regulations which require more elaborate technical efforts and unfortunately lead to a negative trend on fuel economy as well, todays and future trucking business is extremely challenged. These facts create an urgent requirement for the engine manufacturer to offer an engine with an optimized cost-benefit-ratio for the trucking business. Mercedes-Benz, as the leader in the European commercial vehicle market - of which e. g. high fuel costs, long maintenance intervals and high engine power-to-weight ratios have always been key characteristics - has developed a new class 8 engine for the US market. The MBE 4000 is a 6 cylinder inline engine in the compact size and low weight category, but due to its displacement of 12,8 liters it offers high performance characteristics like heavier big block engines.
Technical Paper

“LABORATORY OCTANE RATINGS WHAT DO THEY MEAN?”

1957-01-01
570099
The results of several anti-knock studies are discussed in this paper. Road anti-knock performance for 1000 fuel blends covering the years 1940 to 1957 have been investigated. The laboratory Research octane numbers of these fuels covered the range from 80 to 105. The fuels were evaluated in 46 cars representing a cross-section of the automotive products for these years. The objective of these investigations was to determine the practical application of the laboratory to road octane rating relationships, and the effect of vehicles, and operating conditions on these relationships. The results show that there is a valid correlation between laboratory and road octane ratings. The relative importance of Research and Motor octane ratings on road performance is influenced by make of car, engine speed, throttle position, and distributor advance characteristics. It also indicated that aromatics improve, whereas olefins reduce high speed Modified Borderline ratings.
X