Refine Your Search

Topic

Author

Affiliation

Search Results

Viewing 1 to 20 of 39038
Technical Paper

“Virtual Engine/Powertrain/Vehicle” Simulation Tool Solves Complex Interacting System Issues

2003-03-03
2003-01-0372
An integrated simulation tool has been developed, which is applicable to a wide range of design issues. A key feature introduced for the first time by this new tool is that it is truly a single code, with identical handling of engine, powertrain, vehicle, hydraulics, electrical, thermal and control elements. Further, it contains multiple levels of engine models, so that the user can select the appropriate level for the time scale of the problem (e.g. real-time operation). One possible example of such a combined simulation is the present study of engine block vibration in the mounts. The simulation involved a fully coupled model of performance, thermodynamics and combustion, with the dynamics of the cranktrain, engine block and the driveline. It demonstrated the effect of combustion irregularity on engine shaking in the mounts.
Technical Paper

“Trapless” Trap – A Catalytic Combustion System of Diesel Particulates Using Ceramic Foam

1983-02-01
830082
“Trapless” Trap, which makes possible the effective collecting of particulates in diesel exhaust gas and their simultaneous combustion has been developed by use of a ceramic foam in combination with catalysts containing copper salt. From a TEM photograph, it was observed that the particulate was rapidly oxidized by mobile copper ion, showing worm-eaten like spots. Screening of various base metal salts by TGA presented CUCl2-KCl-NH4VO3 and CuCl2-KCl-(NH4)6Mo7O24 as very active catalysts for diesel particulate oxidation. They had thermal stability up to 900°C when they were supported on titania. The results obtained by measuring the back pressure using 1.8L diesel engine suggest the above trap to be a self-cleaning trapless trap.
Technical Paper

“The Influence of Idle, Drive Cycle and Accessories on the Fuel Economy of Urban Hybrid Electric Buses - Chassis Dynamometer Tests”

2003-11-10
2003-01-3438
Fuel economy can be part of a business case for a fleet making the decision to buy new HD hybrid drivetrain technologies. Chassis dynamometer tests using SAE Recommended Practice J2711 on a bus equipped with an Allison EP SYSTEM ™ hybrid system and operated on standard bus driving cycles have produced impressive gains of over 60%. Preliminary urban bus field tests, on the other hand, have shown lower fuel economy gains. The difference can be attributed, in part, to the use of accessories - most importantly air conditioning - which are parasitic loads on the vehicle. In this paper the characteristics of driving cycles are studied to determine those factors which have the strongest influence on fuel economy for hybrids. The data show that the number of stopping events in a route or cycle is a strong influence as is the average vehicle speed. Energy analysis will show the relationship of fuel economy benefit and battery energy within a driving cycle.
Technical Paper

“The Creation, Development and Implementation of a Lean Systems Course at Oakland University, Rochester, MI”

2005-04-11
2005-01-1798
Countless articles and publications3,4,5 have documented and proven the efficacy, benefits and value of operating within a lean system. Furthermore, there exists common agreement amongst leading organizations successfully implementing a lean system that in order to do so it must take into consideration the entire enterprise, that is, from supplier to customer and everything in between6. One of the core issues this paper addresses is when the optimal time is to train and educate the people who currently have, or will have, influence over the ‘enterprise’.
Technical Paper

“Test Methodology Development for Rig Level Validation of Light Weight Stabilizer Link of EV Bus Suspension”

2024-01-16
2024-26-0357
In the modern and fast growing automotive sector, reliability & durability are two terms of utmost importance along with weight & cost optimization. Therefore it is important to explore new technology which has less weight, low manufacturing cost and better strength. The new technology developed always seek for a quick, cost effective and reliable methodology for its design validation so that any modification can be made by identifying the failures. This paper presents the rig level test methodology to validate and to correlate the CAE derived strain levels, life cycle & failure mode of newly developed light weight stabilizer link for EV Bus suspension
Technical Paper

“Standardizing the Datasheet” Towards Auto-Code Generation Efficiency

2009-04-20
2009-01-0270
Software programs in non-application areas such as Board Support Packages, Hardware Abstraction Layers, signal processing and data acquisition are more or less very standard and common across many applications. These form a major part of the “platform” software, which changes very little. However, it is seen that many a time, efforts are spent resolving issues in the hardware dependent layers rather than concentrating on the application at hand, despite the fact that the software controlling the hardware has been developed many times. There are many reasons why this section of the software is rewritten many times over: different coding standards, different software architecture and layering concepts, the dreadful cut-and-paste methods, and so on. Introduction of a tool-based code configurator and generator eliminates access to the code and focuses on configuring a pre-written set of SW procedures. Advantages: Standardization, reuse and high levels of productivity.
Technical Paper

“Smart Panel” Electronic Circuit Breaker Control Technology

2008-11-11
2008-01-2880
This paper will discuss using Astronics “Smart Panel” illuminated control panels to control an electronic power distribution system. A discussion of wiring simplification, automatic control possibilities and real time load monitoring is presented. The challenges of retrofitting the system into older aircraft will be covered as well. The paper also explains Electronic Circuit Breaker technology, arc fault protection, panel lighting technologies, control bus options, displays, and human input technology (buttons and knobs).
Technical Paper

“Sky Hooks” for Automobiles

1935-01-01
350109
IN this paper the authors present some experimental results obtained by using the analysis outlined by Prof. James J. Guest before the Institution of Automobile Engineers, in 1926. To make the experimental work more understandable, they present the essential points of Professor Guest's analysis. Professor Guest begins his analysis of the movements of a car body with the simplest set of conditions and presents a graphical as well as an algebraic solution. He then includes one additional factor after another in his analysis until the principal factors in car suspension are included. After all factors are considered, the essential structure of the simple analysis is retained. The authors' efforts at the experimental determination of the moment of inertia of passenger cars were started in January, 1932, on Sir Charles Dennistoun Burney's “tear-drop” design with which he visited leading American manufacturers.
Technical Paper

“Seizure-Delay” Method for Determining the Seizure Protection of EP Lubricants

1939-01-01
390146
IT does not yet seem to be recognized fully that it is the local temperature at the surface of contact and not the local specific pressure that chiefly determines the occurrence of seizure under extreme-pressure-lubrication conditions. This local temperature is the result of the temperature level of the parts lubricated, considered as a whole (“bulk” temperature) and of a superimposed instantaneous temperature rise (temperature “flash”) which is localized in the surface of contact. It appears typical for extreme-pressure-lubrication conditions, as met in gear practice, that the temperature flash is much higher than the bulk temperature. With existing conventional test methods for the determination of the protection against seizure afforded by EP lubricants, a considerable rise of the bulk temperature mostly occurs; as it cannot be controlled sufficiently; thus, leaving an unknown margin for the temperature flash, it renders impossible a reliable determination.
Technical Paper

“Second-Generation” SAE 5W-30 Passenger Car Engine Oils

1986-10-01
861515
High performance lubricant additive systems have been developed to formulate SAE 5W-30 passenger car engine oils which meet current and anticipated requirements of the North American original equipment manufacturers. The trend in North America is to recommend SAE 5W-30 oils that not only meet the API SF requirements for gasoline engines (“first-generation” oils), but also meet the stringent API CC requirement for light duty diesel engines (“second-generation” oils). Furthermore, the engine builders have issued “world specifications” for motor oils which incorporate additional “second-generation” SAE 5W-30 characteristics, such as enhanced API SF limits, improved fuel efficiency, an increased margin of bearing protection, and lower finished-oil phosphorus levels. The additive systems described herein exceed API SF and CC requirements as well as “second-generation” performance hurdles.
Technical Paper

“Prediction of In-Cylinder Pressure, Temperature, and Loads Related to the Crank Slider Mechanism of I.C. Engines: A Computational Model”

2003-03-03
2003-01-0728
This paper describes the initial works related to the study of Internal Combustion Engines, as an object of mechanical design, at the Universidad Tecnológica de Pereira. It is reported a concise, complete methodology for simple model of internal combustion engine. The emphasis of the paper is placed on the use of the in-cylinder parameters (pressure and temperature) and inertial loads in the crank-slider mechanism to derive the loads that act on all the components of the crank-slider mechanism as well as the theoretical output torque for a given geometrical structure and inertial properties. These loads can then be used to estimate the preliminary dimensions of engine components in the initial stage of engine development. To obtain the pressure and temperature inside the cylinder, under different operation parameters, such as air fuel ratio and spark angle advance, a Zero dimensional model is applied. The heat transfer from the cylinder and friction are not taken into account.
Technical Paper

“Pedestrian in the Loop”: An Approach Using Augmented Reality

2018-04-03
2018-01-1053
A large number of testing procedures have been developed to ensure vehicle safety in common and extreme driving situations. However, these conventional testing procedures are insufficient for testing autonomous vehicles. They have to handle unexpected scenarios with the same or less risk a human driver would take. Currently, safety related systems are not adequately tested, e.g. in collision avoidance scenarios with pedestrians. Examples are the change of pedestrian behaviour caused by interaction, environmental influences and personal aspects, which cannot be tested in real environments. It is proposed to use augmented reality techniques. This method can be seen as a new (Augmented) Pedestrian in the Loop testing procedure.
Technical Paper

“OPERAS” In Advanced Diesel Engines for Commercial and Military Applications

2006-04-03
2006-01-0927
Advanced diesel engines developed for the commercial market need to be adapted to the military requirements by OPERAS (Optimizing the injection pressure P, the Exhaust gas recirculation E, injection events Retard and/or Advance and the swirl ratio S). The different after treatment devices, already used or expected to be applied to diesel engines, require feed gases of appropriate properties for their efficient operation. To produce these gases some OPERAS are needed to control the diesel combustion process. Since military vehicles do not need the after treatment devices, the OPERAS of the commercial engines should be modified to meet the military requirements for high power density, better fuel economy, reduction of parasitic losses caused by the cooled EGR system, and reduction of invisible black and white smoke in the field.
Technical Paper

“LABORATORY OCTANE RATINGS WHAT DO THEY MEAN?”

1957-01-01
570099
The results of several anti-knock studies are discussed in this paper. Road anti-knock performance for 1000 fuel blends covering the years 1940 to 1957 have been investigated. The laboratory Research octane numbers of these fuels covered the range from 80 to 105. The fuels were evaluated in 46 cars representing a cross-section of the automotive products for these years. The objective of these investigations was to determine the practical application of the laboratory to road octane rating relationships, and the effect of vehicles, and operating conditions on these relationships. The results show that there is a valid correlation between laboratory and road octane ratings. The relative importance of Research and Motor octane ratings on road performance is influenced by make of car, engine speed, throttle position, and distributor advance characteristics. It also indicated that aromatics improve, whereas olefins reduce high speed Modified Borderline ratings.
Technical Paper

“KATPROG” for the Determination of an Optimal Cost Effective Catalyst System

2001-01-10
2001-26-0016
An two-dimensional axial symmetrical finite volume model will be introduced for the calculation of catalytic converters. It is able to predict transient temperatures and conversion rates in different converter systems according to the driving conditions. Input data are the mass-flow rate, the converter inlet temperature and the raw emissions. The performance of this model is demonstrated on an Indian motorcycle application. Cold start behavior and peak temperatures are investigated. This model has proven to be an effective tool for the preselection of an optimal cost effective catalyst system.
Technical Paper

“Jet Air” Compressor Control System

1971-02-01
710203
This paper describes the interrelated controls for automatic start sequencing, fuel scheduling, customer air delivery, and supervisory and protective systems as applied to the Curtiss-Wright CW657E “Jet-Air” Compressor. Model CW657E is capable of delivering 15,000 SCFM air at 85 psig (at 30°F and sea level pressure) and may be used in a diversity of manufacturing, processing, and industrial applications. A description of the control system and its operation in relation to compressor requirements, while furnishing air to feed distribution lines to air assisted water atomizing nozzles for snow making is reviewed as an example. Other models can deliver up to 30,000 SCFM with modified control systems, including pressure controls.
X