Refine Your Search

Topic

Author

Search Results

Technical Paper

X-Ray Measurements of High Pressure Diesel Sprays

2001-03-05
2001-01-0531
A quantitative and time-resolved technique has been developed to probe the fuel distribution very near the nozzle of a high-pressure diesel injector. This technique uses the absorption of synchrotron x-rays to measure the fuel mass with good time and position resolution. The penetrating power of x-rays allows measurements that are difficult with other techniques, such as quantitative measurements of the mass and penetration measurements of the trailing edge of the spray. Line-of-sight measurements were used to determine the fuel density as a function of time. The high time resolution and quantitative nature of the measurement also permit an accurate measure of the instantaneous mass flow rate through the nozzle.
Technical Paper

Ultrafast X-Ray Phase-Enhanced Microimaging for Visualizing Fuel Injection Process

2005-09-11
2005-24-093
Propagation-based and phase-enhanced x-ray imaging was developed as a unique metrology technique to visualize the internal structure of high-pressure fuel injection nozzles. We have visualized the microstructures inside 200-μm fuel injection nozzles in a 3-mm-thick steel housing using this novel technique. Furthermore, this new x-ray-based metrology technique has been used to directly study the highly transient needle motion in the nozzles in situ and in real-time, which is virtually impossible by any other means. The needle motion has been shown to have the most direct effect on the fuel jet structure and spray formation immediately outside of the nozzle. In addition, the spray cone-angle has been perfectly correlated with the numerically simulated fuel flow inside the nozzle due to the transient nature of the needle during the injection.
Technical Paper

Transient Simulation of DGI Engine Injector with Needle Movement

2002-10-21
2002-01-2663
Utilization of direct injection systems is one of the most promising technologies for fuel economy improvement for SI engine powered passenger cars. Engine performance is essentially influenced by the characteristics of the injection equipment. This paper will present CFD analyses of a swirl type GDI injector carried out with the Multiphase Module of AVL's FIRE/SWIFT CFD code. The simulations considered three phases (liquid fuel, fuel vapor, air) and mesh movement. Thus the transient behavior of the injector can be observed. The flow phenomena known from measurement and shown by previous simulation work [2, 7, 10, 11] were reproduced. In particular the simulations shown in this paper could explain the cause for the outstanding atomization characteristics of the swirl type injector, which are caused by cavitation in the nozzle hole.
Technical Paper

Transient Cavitating Flow Simulations Inside a 2-D VCO Nozzle Using the Space-Time CE/SE Method

2001-05-07
2001-01-1983
Cavitating flows inside a two-dimensional valve covered orifice (VCO) nozzle were simulated by using the Space-Time Conservation Element and Solution Element (CE/SE) method in conjunction with a homogeneous equilibrium cavitation model. As a validation for present model, cavitation over a NACA0015 hydrofoil was predicted and compared with previous simulation results as well as experimental observations. The model was then used to investigate the effects on internal cavitating flows of different nozzle design parameters, such as the hole size, hole aspect-ratio, hydro-erosion radius, and orifice inclination. Under different conditions, cavitating flows through fuel injectors generated hydraulic flip, supercavitation, full cavitation, and cyclical cavitation phenomena, which are commonly observed in experiments.
Technical Paper

The Study on Co-Simulation Based Tracked Vehicle Path Tracking Control

2015-04-14
2015-01-1114
The tracked vehicle with a fully hydraulic driving system, which has a strong traveling performance of passing and mobility ability in the complex terrain, is a typical system of mechanical-electrical-hydraulic integration. At the same time, for the good low-speed stability of the hydraulic system, this vehicle is widely applied in most engineering projects. However, for the complexity and unpredictability of the motion state in the complex environment and the power matching of the driving system, the driving path of the tracked vehicle with hydraulic driving is difficult to control. Moreover, for the complicated interaction between mechanics, the establishment of the mathematical model is much more complex, and the traditional mechanics-control and hydraulic-control co-simulation can not accurately simulate this physical phenomenon. The kinematic and dynamics characteristics of the tracked vehicle are studied firstly, and the dynamics model is built.
Technical Paper

The Effect of Fuel-Line Pressure Perturbation on the Spray Atomization Characteristics of Automotive Port Fuel Injectors

1995-10-01
952486
An experimental study was carried out to characterize the spray atomization process of automotive port fuel injectors retrofitted to a novel pressure modulation piezoelectric driver, which generates a pressure perturbation inside the fuel line. Unlike many other piezoelectric atomizers, this unit does not drive the nozzle directly. It has a small size and can be installed easily between regular port injector and fuel lines. There is no extra control difficulty with this system since the fuel injection rate and injection timing are controlled by the original fuel-metering valve. The global spray structures were characterized using the planar laser Mie scattering (PLMS) technique and the spray atomization processes were quantified using phase Doppler anemometry (PDA) technique.
Journal Article

Spray Characterization of Ethanol Gasoline Blends and Comparison to a CFD Model for a Gasoline Direct Injector

2010-04-12
2010-01-0601
Operation of flex fuel vehicles requires operation with a range of fuel properties. The significant differences in the heat of vaporization and energy density of E0-E100 fuels and the effect on spray development need to be fully comprehended when developing engine control strategies. Limited enthalpy for fuel vaporization needs to be accounted for when developing injection strategies for cold start, homogeneous and stratified operation. Spray imaging of multi-hole gasoline injectors with fuels ranging from E0 to E100 and environmental conditions that represent engine operating points from ambient cold start to hot conditions was performed in a spray chamber. Schlieren visualization technique was used to characterize the sprays and the results were compared with Laser Mie scattering and Back-lighting technique. Open chamber experiments were utilized to provide input and validation of a CFD model.
Technical Paper

Simulation of Dual-Fuel-CI and Single-Fuel-SI Engine Combustion Fueled with CNG

2016-04-05
2016-01-0789
With increasing interest to reduce the dependency on gasoline and diesel, alternative energy source like compressed natural gas (CNG) is a viable option for internal combustion engines. Spark-ignited (SI) CNG engine is the simplest way to utilize CNG in engines, but direct injection (DI) Diesel-CNG dual-fuel engine is known to offer improvement in combustion efficiency and reduction in exhaust gases. Dual-fuel engine has characteristics similar to both SI engine and diesel engine which makes the combustion process more complex. This paper reports the computational fluid dynamics simulation of both DI dual-fuel compression ignition (CI) and SI CNG engines. In diesel-CNG dual-fuel engine simulations and comparison to experiments, attention was on ignition delay, transition from auto-ignition to flame propagation and heat released from the combustion of diesel and gaseous fuel, as well as relevant pollutants emissions.
Technical Paper

SUV Solar Roof with Photo-Thermal Effect for Ventilation ORC System

2016-04-05
2016-01-0240
The Organic Rankine Cycle System (ORC) is an effective means to use the solar energy. The system adopts the solar energy on the car roof as the heat source to make the ORC work and drive the thermoelectric air-conditioner. It can improve the entering comfort on the parking condition and the vehicle energy utilization efficiency. In this research, the system comprehensively applied the principle of sunshine concentration, heat collection and photo electricity. Then considering the working condition and performance features of ORC system, the car roof was designed to have a compact structure, through which the efficiency of the solar vehicle system could be improved. Firstly, the research analyzed the heat source temperature and the heat flux impact on the output power of the ORC system. After that, the performance of heat collection was identified according to the given thermoelectric air-condition’s power requirements.
Technical Paper

Prediction of Pressure Fluctuations Inside an Automotive Fuel Rail System

1999-03-01
1999-01-0561
A computer model is developed for predicting pressure fluctuations inside an automotive electronic fuel rail system, which consists of six injectors connected in series through pipelines and a pressure regulator. The pressure fluctuations are mainly caused by opening and closing of injectors fired in a particular order. The needles that control the opening and closing of the injectors are modeled by mass- spring-dashpot systems, whose equations of motion are governed by a second order ordinary differential equations. A similar second order ordinary differential equation is used to describe the motion of the membrane with nonlinear stiffness inside the pressure regulator. The responses of injectors and pressure regulator are coupled by unsteady one-dimensional flow through the pipelines. The pressure fluctuations are also required to satisfy a one-dimensional damped wave equation. To validate this computer model, pressure fluctuations inside injectors and pipelines are calculated.
Technical Paper

Predicting Diesel Injector Nozzle Flow Characteristics

2004-01-16
2004-28-0014
In diesel injector nozzles, the shape of the orifice entrance and the sac-volume play a significant role in determining the orifice internal flow characteristics and the subsequent spray formation process. The sac-volume of the injector nozzle determines injection characteristics like injection rate shape and discharge coefficients. The sac-volume is also important from emissions point of view, in that it controls the amount of Un-Burnt Hydrocarbons (UBHC). This paper demonstrates the use of commercial dynamic and computational fluid dynamics (CFD) programs in predicting the flow characteristics of various nozzle orifice and sac-volume configurations. Three single orifice nozzle tips with varying sac configurations and orifice entrance shapes are studied. Transient simulations are carried out in order to compare the injection rates, discharge coefficients and internal flow characteristics for the nozzle tips. The simulation results are compared with experimental results.
Technical Paper

Numerical Study of Ultra Low Solidity Airfoil Diffuser in an Automotive Turbocharger Compressor

2009-04-20
2009-01-1470
For the application of advanced clean combustion technologies, such as diesel HCCI/LTC, a compressor with high efficiency over a broad operation range is required to supply a high amount of EGR with minimum pumping loss. A compressor with high pitch of vaneless diffuser would substantially improve the flow range of the compressor, but it is at the cost of compressor efficiency, especially at low mass flow area where most of the city driving cycles resides. In present study, an ultra low solidity compressor vane diffuser was numerically investigated. It is well known that the flow leaving the impeller is highly distorted, unsteady and turbulent, especially at relative low mass flow rate and near the shroud side of the compressor. A conventional vaned diffuser with high stagger angle could help to improve the performance of the compressor at low end. However, adding diffuser vane to a compressor typically restricts the flow range at high end.
Technical Paper

Numerical Investigation of Natural Gas-Diesel Dual Fuel Engine with End Gas Ignition

2018-04-03
2018-01-0199
The present study helps to understand the local combustion characteristics of PREmixed Mixture Ignition in the End-gas Region (PREMIER) combustion mode while using increasing amount of natural gas as a diesel substitute in conventional CI engine. In order to reduce NOx emission and diesel fuel consumption micro-pilot diesel injection in premixed natural gas-air mixture is a promising technique. New strategy has been employed to simulate dual fuel combustion which uses well established combustion models. Main focus of the simulation is at detection of an end gas ignition, and creating an unified modeling approach for dual fuel combustion. In this study G-equation flame propagation model is used with detailed chemistry in order to detect end-gas ignition in overall low temperature combustion. This combustion simulation model is validated using comparison with experimental data for dual fuel engine.
Technical Paper

Near-Nozzle Structure of Diesel Sprays Affected by Internal Geometry of Injector Nozzle: Visualized by Single-Shot X-ray Imaging

2010-04-12
2010-01-0877
By taking advantage of high-intensity and high-brilliance x-ray beams available at the Advanced Photon Source (APS), ultrafast (150 ps) propagation-based phase-enhanced imaging was developed to visualize high-pressure high-speed diesel sprays in the optically dense near-nozzle region. The sub-ns temporal and μm spatial resolution allows us to capture the morphology of the high-speed fuel sprays traveling at 500 m/s with a negligible motion blur. Both quality and quantitative information about the spray feature can be readily obtained. In the experiment, two types of single-hole nozzles have been used, one with a hydroground orifice inlet and the other with a sharp one. Within 3 mm from the nozzle, the sprays from these nozzles behave differently, ranging from laminar flow with surface instability waves to turbulent flow. The sprays are correlated with the nozzle internal geometry, which provides practical information for both nozzle design and supporting numerical simulation models.
Technical Paper

Modeling the Effects of EGR and Injection Pressure on Emissions in a High-Speed Direct-Injection Diesel Engine

2001-03-05
2001-01-1004
Experimental data is used in conjunction with multi-dimensional modeling in a modified version of the KIVA-3V code to characterize the emissions behavior of a high-speed, direct-injection diesel engine. Injection pressure and EGR are varied across a range of typical small-bore diesel operating conditions and the resulting soot-NOx tradeoff is analyzed. Good agreement is obtained between experimental and modeling trends; the HSDI engine shows increasing soot and decreasing NOx with higher EGR and lower injection pressure. The model also indicates that most of the NOx is formed in the region where the bulk of the initial heat release first takes place, both for zero and high EGR cases. The mechanism of NOx reduction with high EGR is shown to be primarily through a decrease in thermal NOx formation rate.
Technical Paper

Modeling of Dynamic Responses of Injectors for an Automotive Fuel Rail System

1999-03-01
1999-01-0795
This paper presents a computer model for simulating dynamic responses inside an injector of an automotive fuel rail system. The injector contains a filter at the top, a coil spring in the middle, and a needle and orifices at the bottom. The equations of motion for unsteady one-dimensional flow are derived for the fluid flowing through the injector. The needle motion is described by a second order ordinary differential equation. The forces exerted on the needle include the magnetic force that controls the opening and closing of the injector and the coil spring force. To account for the loss of kinetic energy, we define two loss factors Ka and Kb. The former describes the loss of kinetic energy as fluid enters the injector through the filter at the top, and the latter depicts that as fluid is ejected into a large chamber through the passage between the needle and the needle seat and across four orifices at the bottom of the injector.
Technical Paper

Modeling and Validation of Lithium-Ion Polymer SLI Battery

2019-04-02
2019-01-0594
Lead-acid batteries have dominated the automotive conventional electric system, particularly in the functions of starting (S), lighting (L) and ignition (I) for decades. However, the low energy-to-weight ratio and the low energy-to-volume ratio makes the lead-acid SLI battery relatively heavy, large, and shallow Depth of Discharge (DOD). This could be improved by replacing the lead-acid battery by the lithium-ion polymer battery. The lithium-ion polymer battery can provide the same power with lightweight, compact volume, and deep DOD for engine idle elimination using start-stop function that is a basic feature in electric-drive vehicles. This paper presents the modeling and validation of a lithium-ion battery for SLI application. A lithium-metal-oxide based cell with 3.6 nominal voltage and 20Ah capacity is used in the study. A simulation model of lithium-ion polymer battery pack (14.4V, 80Ah) with battery management system is built in the MATLAB/Simulink environment.
Technical Paper

Modeling and Analyzing for Hydraulic-Driven Cooling System of Heavy Duty Truck

2016-04-05
2016-01-0222
The heavy duty trucks have large engine power and drive continuously in mountainous area, so the heat dissipation of engine is very important. In the traditional cooling system with fixed transmission ratio fan, the cooling capacity is insufficient and the engine is easy to be over-heated when the engine is working in low speed and heavy load conditions. Owning to the bigger size of electric motor compared to the hydraulic motor, it is not suitably applied to the heavy duty trucks. Contrasted with the electric motor, the hydraulic drive cooling system is widely applied in heavy duty trucks due to smaller size, larger power, continuous speed modulation and flexible installation location. However, the low transmission efficiency of the pump-motor system results in high power consumption of the cooling system. In this paper, the mathematical and simulation model of hydraulic-driven fan cooling system is established for the specific engine.
Technical Paper

Modeling Dynamic Behavior of Diesel Fuel Injection Systems

2004-03-08
2004-01-0536
Precise control of fuel delivery and injection pressure is essential in modern DI diesel engines. Electronically controlled high-pressure injection systems provide features required by modern diesel engines such as precise injection quantity, flexible injection timing, flexible rate of injection with multiple injections and high injection pressures. A comprehensive experimental and numerical investigation has been performed to determine the influence of operating parameters and critical injector design parameters on the dynamic performance of advanced high-pressure electronically controlled diesel injection systems. The injection systems compared in this study are the High Pressure Common Rail (HPCR) and the Hydraulic Electronic Unit Injector (HEUI). Experiments are carried out using a Bosch type injection-rate meter. Needle lift, injection-rate/rate shape, and injection pressure are measured.
Technical Paper

Modeling Compressor Pressure Ratio vs. Mass Flow Rate Including Choke Line and Surge Line Using Scaling Theorem

2022-03-08
2022-01-0029
In this paper, a procedure to obtain the compressor map (pressure ratio vs. mass flow rate) is showed by scaling of the available compressor maps with similar shape and design using scaling theorem. The reason to develop such procedure is that in industrial application, a new compressor map need be developed before the complete geometry and hardware of compressor are known. Such procedure is especially useful for users such as engine or vehicle OEM to quickly select turbocharger compressor independently. The scaling law is used to model the non-dimensional parameters of compressor head coefficient vs. mass flow coefficient. Detail procedure from the non-dimensional parameters to the final compressor performance data are described.
X