Refine Your Search

Topic

Author

Affiliation

Search Results

Viewing 1 to 20 of 21735
Technical Paper

“The Creation, Development and Implementation of a Lean Systems Course at Oakland University, Rochester, MI”

2005-04-11
2005-01-1798
Countless articles and publications3,4,5 have documented and proven the efficacy, benefits and value of operating within a lean system. Furthermore, there exists common agreement amongst leading organizations successfully implementing a lean system that in order to do so it must take into consideration the entire enterprise, that is, from supplier to customer and everything in between6. One of the core issues this paper addresses is when the optimal time is to train and educate the people who currently have, or will have, influence over the ‘enterprise’.
Technical Paper

“Taguchi Customer Loss Function” Based Functional Requirements

2018-04-03
2018-01-0586
Understanding customer expectations is critical to satisfying customers. Holding customer clinics is one approach to set winning targets for the engineering functional measures to drive customer satisfaction. In these clinics, customers are asked to operate and interact with vehicle systems or subsystems such as doors, lift gates, shifters, and seat adjusters, and then rate their experience. From this customer evaluation data, engineers can create customer loss or preference functions. These functions let engineers set appropriate targets by balancing risks and benefits. Statistical methods such as cumulative customer loss function are regularly applied for such analyses. In this paper, a new approach based on the Taguchi method is proposed and developed. It is referred to as Taguchi Customer Loss Function (TCLF).
Technical Paper

“Rubber Coupling” at a 4×4 Transmition System

2003-11-18
2003-01-3684
There are many different vibration sources in a car. Engine, gears, road roughness, impacts against the wheels cause vibration and sound that can decrease the parts and the car durability as well as affect drivability, safety and passengers and community comfort. In 4×4 cars, some extra vibration sources are the parts responsible for transmitting the torque and power to the rear wheels. Each of them has their own vibration modes, excited mostly by its imbalance or by the second order engine vibration. The engine vibration is a very well known phenomena and the rear driveshaft is designed not to have any vibration mode in the range of frequencies that the engine works or its second order. The imbalance of a driveshaft is also a design requirement. That means, the acceptable imbalance of the driveshaft is limited to a maximum value.
Technical Paper

“Rigidization-on-Command”™ (ROC) Resin Development for Lightweight Isogrid Booms with MLI

2003-07-07
2003-01-2342
The “Rigidization-on-Command”™ (ROC™) resin development has focused on the development of resin systems that use UV light cure for rigidization. Polymeric sensitizers have been incorporated into the resin formulations to promote cure using Pen-Ray lamps and UV light-emitting diodes (LED's). Formulations containing the polymeric sensitizers were examined by FTIR and DSC. Complete cure was observed after 15 min. exposure with the Pen-Ray lamps. Performance of the Pen-Ray lamps and UV LEDs was thoroughly characterized. Thermal models were developed to optimize the performance of the of the MLI insulation thermal oven used for orbital cure of the boom. Results show that -12°C is the lowest temperature required for cure of the ROC™ resin systems.
Technical Paper

“Quiet” Aspects of the Pratt & Whitney Aircraft JT15D Turbofan

1973-02-01
730289
This paper describes the engine design details of the Pratt & Whitney JT15D-1 engine as related to noise generation. Design principles and factors contributing to the very low-noise levels on the Cessna Citation aircraft are illustrated. Noise testing experiences and data from static tests on the United Aircraft of Canada Ltd. (UACL) flight test aircraft and from both static and flight tests on the Citation aircraft are discussed. Lessons learned from these tests and some future probabilities are outlined.
Technical Paper

“Projection-by-Projection” Approach: A Spectral Method for Multiaxial Random Fatigue

2014-04-01
2014-01-0924
This paper presents a fatigue criterion based on stress invariants for the frequency-based analysis of multiaxial random stresses. The criterion, named “Projection-by-Projection” (PbP) spectral method, is a frequency-based reformulation of its time-domain definition. In the time domain PbP method, a random stress path is first projected along the axes of a principal reference frame in the deviatoric space, thus defining a set of uniaxial random stress projections. In the frequency-domain approach, the damage of stress projections is estimated from the stress PSD matrix. Fatigue damage of the multiaxial stress is next calculated by summing up the fatigue damage of every stress projection. The criterion is calibrated on fatigue strength properties for axial and torsion loading. The calculated damage is shown to also depend on the relative ratio of hydrostatic to deviatoric stress components.
Technical Paper

“Personal Integrity” and Man-Machine Integration

1982-02-01
821348
A sense of “personal integrity” blocks pilot use of new information about how he thinks. Research on human performance under stress done over the past fifty years indicates increased rigidity and regression to earlier learned behavior in high stress, and in low Stress a shift in attention to any domestic situation or on the job controversy which is of higher stress than that of the job at hand, all without the pilot's knowledge. Informal surveys of commercial pilot training and commercial pilot attitudes towards these studies indicate that the study findings directly confront learned cultural responses. Pilot and trainer reactions prevent the information from being adequately investigated or formally taught. The findings are not written into training manuals and pilots who are informally given the information do not have adequate access to the knowledge when it is needed.
Technical Paper

“Optimization” of Lower Deck Cargo Systems

1988-05-01
880973
The ability to carry cargo efficiently in passenger aircraft has influenced airline economics to the point that optimisation of the freight capacity is mandatory. This document discusses the alternative loading possibilities in defined Lover Deck Compartments and their doors to cater for current and future trends in ULD dimensions. As a result items for study centred on: 1) Optimisation of the available volumes Freight capacity resulting in the selection of “Pallets”-doors for both the Forward and AFT Compartments. Flexibility to meet Freight and Baggage requirements. Possible load arrangements to optimize aircraft C of G 2) Bulk Cargo Compartment Additional LD3 Container position in AFT/Bulk compartment to cater for an uneven number of Baggage container, allowing the carriage of an additional pallet. What is regarded as an optimum is presented.
Technical Paper

“Next Generation” Means for Detecting Squeaks and Rattles in Instrument Panels

1997-05-20
972061
Engineers doing squeak and rattle testing of instrument panels (IP's) have successfully used large electrodynamic vibration systems to identify sources of squeaks and rattles (S&R's). Their successes led to demands to test more IP's, i.e., to increase throughput of IP's to reflect the many design, material, and/or manufacturing process changes that occur, and to do so at any stage of the development, production, or QA process. What is needed is a radically different and portable way to find S&R's in a fraction of the time and at lower capital cost without compromising S&R detection results.
Technical Paper

“Motion in FEA”: An Innovative Approach for More Physical and More Accurate Vehicle Dynamics Simulation

2012-04-16
2012-01-0762
Vehicle dynamics is a discipline of mechanical engineering that benefited of significant improvements thanks to the progress of computational engineering. Vehicle dynamics engineers are using CAE for the development of a vehicle with MBS and FEA. The concurrent use of these two technologies is a standard in the automotive industry. However the current simulation process is not fully efficient because local geometrical and material nonlinearities are not accurately modeled in classical MBS software. This paper introduces a methodology for vehicle dynamics simulation integrating MBS capabilities in one single nonlinear FEA environment enabling an accurate modeling of nonlinearity in vehicles.
Technical Paper

“Herschel-Quincke Spiral” A New Interference Silencer

2003-05-05
2003-01-1722
Over the last ten years there has been a steady growth in the market share of light-duty diesel engines, especially in Europe. At the same time, a general trend in petrol engine development has been seen, in which normal aspirated engines are being replaced by downsized turbocharged engines. Therefore, NVH engineers have to deal with new challenges. Turbochargers produce an aerodynamic noise in the frequency range above 1000Hz, which might influence the exterior and interior noise level. As a result, the additional requirement for acoustical components to reduce this flow noise is going to pose an increasing challenge for air intake system suppliers. This paper describes a new design of well-known wide band silencer first mentioned by A. Selamet, N.S.Dickey and J.M.Novak [1,2]. The silencer works according to the interference principle. The sound is guided into two or more parallel pipes of different lengths.
Technical Paper

“Greater Than the Sum of its Parts” Integrated Flight Training/Aircrew Coordination

1994-10-01
942132
The requirement for crew resource management (CRM), or aircrew coordination training (ACT) in military parlance, has been well documented and attested to. In addition, aircraft systems training has become more intense and more in-depth in the new aircraft designs, especially in multi-crew and complex aircraft such as the MV-22 Osprey Tiltrotor. (see Figure 1) Former training systems detailed training procedures that called for classroom training and simulation/simulator training followed by flight training. Improvements in aircraft flight skills training provide increased flying training capability coupled with reduced training time by integrating a mixed simulation/flight training syllabus, e.g. two to three simulation periods followed by one or two flight training periods covering the same material/skills. In addition, the simulation training will introduce new skills; the following flight periods will further refine/hone those skills.
Technical Paper

“Fuel Flow Method2” for Estimating Aircraft Emissions

2006-08-30
2006-01-1987
In recent years there has been increasing interest in quantifying the emissions from aircraft in order to generate inventories of emissions for climate models, technology and scenario studies, and inventories of emissions for airline fleets typically presented in environmental reports. The preferred method for calculating aircraft engine emissions of NOx, HC, and CO is the proprietary “P3T3” method. This method relies on proprietary airplane and engine performance models along with proprietary engine emissions characterizations. In response and in order to provide a transparent method for calculating aircraft engine emissions non proprietary fuel flow based methods 1,2,3 have been developed. This paper presents derivation, updates, and clarifications of the fuel flow method methodology known as “Fuel Flow Method 2”.
Technical Paper

“Digital Prototype” Simulations to Achieve Vehicle Level NVH Targets in the Presence of Uncertainties

2001-04-30
2001-01-1529
“Digital Prototype” simulations have been used at DaimlerChrysler to achieve vehicle level NVH objectives. The effectiveness of these simulations to guide the design when faced with vehicle parameter uncertainties is discussed. These uncertainties include, but are not limited to, material properties, material gauges, damping, structural geometry, loads, boundary conditions and weld integrity. Manufacturing and assembly processes introduce variations in the nominal values of these parameters resulting in a scatter of vehicle level NVH simulation responses. An example of a high frequency NVH concern will be studied and modified to arrive at robust design guidance when faced with uncertainty. The validity of a “deterministic digital prototype” simulation model and its relevant role as a “trend predictor” rather than “absolute predictor” tool in guiding the design is also discussed.
Technical Paper

“Converticar” - The Roadable Helicopter

1998-09-28
985513
The Boeing Company in Mesa, Arizona, has been conducting a concept design study of a roadable helicopter called the “Converticar” to assess its feasibility. This is a twin-engine vehicle with twin retractable coaxial counter-rotating rotors. The purpose of the study is to describe a vehicle that carries four passengers in the equivalent of a luxury car that also can fly like a helicopter, and can be priced like a luxury car. To come near this cost goal, the production rate must be on the order of 500,000 units a year. At that rate there is no chance of training a comparable number of pilots each year. So the machine must fly and navigate autonomously, with the pilot just dialing in where he/she wants to go. Technologically, the concept appears to be feasible. Modern design processes, new materials, and improved manufacturing process should allow the Converticar to be built at the prescribed rate when the proper infrastructure for manufacturing it is made available.
Technical Paper

“Active Mass Absorber” at a 4×4 Transmition System

2003-11-18
2003-01-3682
The extensive use of rotative machines in the diverse branches of the modern world has made the rising undesirable mechanical and acoustic vibration levels to be a problem of special importance for the machines normal operation as for the communities that are each time more affected by the problem. It makes the study of vibration and acoustic phenomena also to be even more important and the applications of its concepts more sophisticated. Several are the concepts used for decreasing vibration levels, like common dampers, hydraulic dampers, active dampers, natural frequencies changes and others. The choice of use of one or another depends greatly on the engineering possibilities (weight, energy, physical space, other components functional interference, vibration levels, etc.) as well as the cost of implementation of each one.
X