Refine Your Search

Topic

Search Results

Technical Paper

Prompt Heat Release Analysis to Improve Diesel Low Temperature Combustion

2009-06-15
2009-01-1883
Diesel engines operating in the low-temperature combustion (LTC) mode generally tend to produce very low levels of NOx and soot. However, the implementation of LTC is challenged by the higher cycle-to-cycle variation with heavy EGR operation and the narrower operating corridors. The robustness and efficiency of LTC operation in diesel engines can be enhanced with improvements in the promptness and accuracy of combustion control. A set of field programmable gate array (FPGA) modules were coded and interlaced to suffice on-the-fly combustion event modulations. The cylinder pressure traces were analyzed to update the heat release rate concurrently as the combustion process proceeds prior to completing an engine cycle. Engine dynamometer tests demonstrated that such prompt heat release analysis was effective to optimize the LTC and the split combustion events for better fuel efficiency and exhaust emissions.
Technical Paper

Performance of Spark Energy Distribution Strategy on a Production Engine under Lean-Burn Conditions

2021-04-06
2021-01-0476
Stronger ignition sources become more favorable under extreme lean/EGR conditions. Under those conditions, the reduced pumping loss and low combustion temperature can contribute to further engine efficiency improvement for spark ignited engines. Multicoil ignition system can enhance ignition energy as well as modulate discharge profile. The ignition energy can either be deployed through single spark gap to enhance the ignition capability of the plasma channel, or be distributed to multiple ignition sites to establish multiple flame kernels to secure flame kernel initiation. The multiple ignition coils used for energy distribution ignition strategy also consume more power, in order to maintain the stable operation of the engine under lean operation limit. In this paper, efficacy of concentrated and distributed multicoil ignition strategies were investigated on a spark ignited inline 4-cylinder production engine using a three-ignition-coil pack.
Technical Paper

Performance of Spark Current Boost System on a Production Engine under Lean-Burn Conditions

2024-04-09
2024-01-2106
In order to improve the fuel economy for future high-efficiency spark ignition engines, the applications of advanced combustion strategies are considered to be beneficial with an overall lean and/or exhaust gas recirculation diluted cylinder charge. Stronger and more reliable ignition sources become more favorable under extreme lean/EGR conditions. Existing research indicates that the frequency of plasma restrikes increases with increased flow velocity and decreased discharge current level, and a higher discharge current can reduce the gap resistance and maintain the stretched plasma for a longer duration under flow conditions. An in-house developed current boost control system provides flexible control of the discharge current level and discharge duration. The current boost ignition system is based on a multi-coil system with a discharge current level of 180mA.
Technical Paper

Oxygenated Fuels as Reductants for Lean NOx Trap Regeneration

2024-04-09
2024-01-2132
The push for environmental protection and sustainability has led to strict emission regulations for automotive manufacturers as evident in EURO VII and 2026 EPA requirements. The challenge lies in maintaining fuel efficiency and simultaneously reducing the carbon footprint while meeting future emission regulations. Alcohol (primarily methanol, ethanol, and butanol) and ether (dimethyl ether) fuels, owing to their comparable energy density to existing fuels, the comparative ease of handling, renewable production, and suitable emission characteristics may present an attractive drop-in replacement, fully or in part as an additive, to the gasoline/diesel fuels, without extensive modifications to the engine geometry. Additionally, lean and diluted combustion are well-researched pathways for efficiency improvement and reduction of engine-out emissions of modern engines.
Technical Paper

Ion Current Measurement of Diluted Combustion Using a Multi-Electrode Spark Plug

2018-04-03
2018-01-1134
Close-loop feedback combustion control is essential for improving the internal combustion engines to meet the rigorous fuel efficiency demands and emission legislations. A vital part is the combustion sensing technology that diagnoses in-cylinder combustion information promptly, such as using cylinder pressure sensor and ion current measurement. The promptness and fidelity of the diagnostic are particularly important to the potential success of using intra-cycle control for abnormal cycles such as super knocking and misfiring. Many research studies have demonstrated the use of ion-current sensing as feedback signal to control the spark ignition gasoline engines, with the spark gap shared for both ignition and ion-current detection. During the spark glow phase, the sparking current may affect the combustion ion current signal. Moreover, the electrode gap size is optimized for sparking rather than measurement of ion current.
Technical Paper

Investigation of Flame Detachment Effect during Early Flame Development in a Swirl Flow Field

2021-04-06
2021-01-0482
Lean burn is regarded as one of the most effective ways to improve fuel efficiency for spark ignition engines. However, the excessive air dilution deteriorates combustion stability, limiting the degree of engine operational dilution. The intensified flow field is therefore introduced into the cylinder to mitigate the decline of the burning velocity caused by the leaned-out fuel-air mixture. In a moderate flow field, flame kernels are formed near the hot spark plasma during discharge and stick to the spark gap even after the end of discharge; the flame front then propagates outward and evolves into self-sustained flame. Flame attaching to the spark gap is a common phenomenon in the early combustion stage and has been reported to be beneficial for flame inception in the literature.
Technical Paper

Improvement on Energy Efficiency of the Spark Ignition System

2017-03-28
2017-01-0678
Future clean combustion engines tend to increase the cylinder charge to achieve better fuel economy and lower exhaust emissions. The increase of the cylinder charge is often associated with either excessive air admission or exhaust gas recirculation, which leads to unfavorable ignition conditions at the ignition point. Advanced ignition methods and systems have progressed rapidly in recent years in order to suffice the current and future engine development, and a simple increase of energy of the inductive ignition system does not often provide the desired results from a cost-benefit point of view. Proper design of the ignition system circuit is required to achieve certain spark performances.
Technical Paper

Impact of Plasma Stretch on Spark Energy Release Rate under Flow Conditions

2022-03-29
2022-01-0438
Performance of the ignition system becomes more important than ever, because of the extensively used EGR in modern spark-ignition engines. Future lean burn SI and SACI combustion modes demand even stronger ignition capability for robust ignition control. For spark-based ignition systems, extensive research has been carried out to investigate the discharge characteristics of the ignition process, including discharge current amplitude, discharge duration, spark energy, and plasma stretching. The correlation between the spark stretch and the discharge energy, as well as the impact of discharge current level on this correlation, are important with respect to both ignition performance, and ignition system design. In this paper, a constant volume combustion chamber is applied to study the impact of plasma stretch on the spark energy release process with cross-flow speed from 0 m/s up to 70 m/s.
Technical Paper

Ignition Improvement of Premixed Methane-Air Mixtures by Distributed Spark Discharge

2015-09-01
2015-01-1889
In order to improve the fuel economy for future high-efficiency spark ignition engines, the use of advanced combustion strategies with an overall lean and/or exhaust gas recirculation diluted cylinder charge is deemed to be beneficial, provided a reliable ignition process available. In this paper, experimental results of igniting methane-air mixture by means of capacitive coupled ignition and multi-coil distributed spark ignition are presented. It is found that with a conventional spark plug electrode configuration, increase of spark energy does not proportionally enhance the ignition flame kernel development. The use of capacitive coupled ignition to enhance the initial transient power resulted in faster kernel growth compared to the conventional system. The distribution of the spark energy across a number of spark gaps shows considerable benefit.
Technical Paper

Ignition Improvement for Ultra-Lean Dilute Gasoline Combustion

2017-10-08
2017-01-2244
In this work, a spatially distributed spark ignition strategy was employed to improve the ignition process of well-mixed ultra-lean dilute gasoline combustion in a high compression ratio (13.1:1) single cylinder engine at partial loads. The ignition energy was distributed in the perimeter of a 3-pole igniter. It was identified that on the basis of similar total spark energy, the 3-pole ignition mode can significantly shorten the early flame kernel development period and reduce the cyclic variation of combustion phasing, for the spark timing sweep tests at λ 1.5. The effect of ignition energy level on lean-burn operation was investigated at λ 1.6. Within a relatively low ignition energy range, i.e. below 46 mJ per pole, the increase in ignition energy via ether 1 pole or 3 pole can improve the controllability over combustion phasing and reduce the variability of lean burn combustion. Higher ignition energy was required in order to enable ultra-lean engine operation with λ above 1.6.
Technical Paper

High Energy Ignition Strategies for Diluted Mixtures via a Three-Pole Igniter

2016-10-17
2016-01-2175
A three-pole spark igniter, with the concept to broaden the ignition area, is employed in this paper to investigate the effect of spark discharge strategies on the early ignition burning process. The prototyped three-pole igniter has three independent spark gaps arranged in a triangular pattern with a circumradius of 2.3 mm. Direct-capacitor discharge techniques, utilizing close-coupled capacitors parallel to the spark gap, are applied on the three-pole igniter to enhance either the transient spark power or the overall energy. In particular, the simultaneous discharge of high energy plasma on three spark gaps can produce a surface-like ignition process which intensifies the plasma-flame interaction, thereby producing a rapid flame kernel development. The ignition strategies are evaluated in both constant volume combustion vessels and a modified single-cylinder metal engine.
Journal Article

Heat Release Pattern Diagnostics to Improve Diesel Low Temperature Combustion

2008-06-23
2008-01-1726
Empirical results indicated that the engine emission and fuel efficiency of low-temperature combustion (LTC) cycles can be optimized by adjusting the fuel-injection scheduling in order to obtain appropriate combustion energy release or heat-release rate patterns. Based on these empirical results the heat-release characteristics were correlated with the regulated emissions such as soot, hydrocarbon and oxides of nitrogen. The transition from conventional combustion to LTC with the desired set of heat-release rate has been implemented. This transition was facilitated with the simplified heat-release characterization wherein each of the consecutive engine cycles was analyzed with a real-time controller embedded with an FPGA (field programmable gate array) device. The analyzed results served as the primary feedback control signals to adjust fuel injection scheduling. The experimental efforts included the boost/backpressure, exhaust gas recirculation, and load transients in the LTC region.
Journal Article

Fuel Injection Strategies to Improve Emissions and Efficiency of High Compression Ratio Diesel Engines

2008-10-06
2008-01-2472
Simultaneous low NOx (< 0.15 g/kWh) & soot (< 0.01 g/kWh) are attainable for enhanced premixed combustion that may lead to higher levels of hydrocarbons and carbon monoxide emissions as the engine cycles move to low temperature combustion, which is a departure from the ultra low hydrocarbon and carbon monoxide emissions, typical of the high compression ratio diesel engines. As a result, the fuel efficiency of such modes of combustion is also compromised (up to 5%). In this paper, advanced strategies for fuel injection are devised on a modern 4-cylinder common rail diesel engine modified for single cylinder research. Thermal efficiency comparisons are made between the low temperature combustion and the conventional diesel cycles. The fuel injection strategies include single injection with heavy EGR, and early multi-pulse fuel injection under low or medium engine loads respectively.
Technical Paper

Fuel Efficiency Improvements of Low Temperature Combustion Diesel Engines

2008-04-14
2008-01-0841
Previous work indicated that low temperature combustion (LTC) in diesel engines was capable of reducing nitrogen oxides and soot simultaneously, when implemented with highly premixed lean cylinder charge or by the use of high exhaust gas recirculation. However, the fuel efficiency of the low temperature combustion cycles was commonly compromised by the high levels of hydrocarbon and carbon monoxide emissions. Additionally, in cases of diesel homogeneous charge cycles, the combustion process may even occur before the piston completes the compression stroke, which may cause excessive efficiency reduction and combustion roughness. Empirical procedures were implemented to better phase and complete the combustion process. The impact of heat release phasing, duration, shaping, and splitting on the thermal efficiency has also been analyzed with zero-dimensional engine cycle simulations. This paper intends to identify the pathways to improve the fuel efficiency of diesel LTC cycles.
Technical Paper

Energy Enhanced Adaptive Spark Ignition for Lean Combustion Initiation

2020-04-14
2020-01-0841
For internal combustion engine systems, lean and diluted combustion is an important technology applied for fuel efficiency improvement. Because of the thermodynamic boundary conditions and the presence of in-cylinder flow, the development of a well-sustained flame kernel for lean combustion is a challenging task. Reliable spark discharge with the addition of enhanced delivered energy is thus needed at certain time durations to achieve successful combustion initiation of the lean air-fuel mixture. For a conventional transistor coil ignition system, only limited amount of energy is stored in the ignition coil. Therefore, both the energy of the spark discharge and the duration of the spark discharge are bounded. To break through the energy limit of the conventional transistor coil ignition system, in this work, an adaptive spark ignition system is introduced. The system has the ability to reconstruct the conductive ion channels whenever it is interrupted during the spark discharge.
Journal Article

Electrical Waveform Measurement of Spark Energy and its Effect on Lean Burn SI Engine Combustion

2019-12-19
2019-01-2159
The conventional transistor coil ignition system with coil-out energy up to 100 mJ might not be sufficient to establish a self-sustained flame kernel under lean combustion with strong in-cylinder flow motion. Further increase of the discharge current will decrease the voltage across the spark gap, which will affect the calculation of the energy delivered to the spark gap. In this paper, the relationship between the discharge current and gap voltage is investigated, and it is discovered that the spark energy doesn,t increase monotonously with the increase of the discharge current. However, engine test results still indicate a positive impact of discharge current amplitude on the engine performance.
Journal Article

Efficiency & Stability Improvements of Diesel Low Temperature Combustion through Tightened Intake Oxygen Control

2010-04-12
2010-01-1118
Diesel engines operating in the low-temperature combustion (LTC) mode generally tend to produce very low levels of NOx and soot. However, the implementation of LTC is challenged by the higher cycle-to-cycle variation with heavy EGR operation and the narrower operating corridors. Small variations in the intake charge dilution can significantly increase the unburnt hydrocarbon and carbon monoxide emissions as well as escalate the consecutive cyclic fluctuations of the cylinder charge. This in turn adversely affects the robustness and efficiency of the LTC operation. However, Improvements in the promptness and accuracy of combustion control as well as tightened control on the intake oxygen concentration can enhance the robustness and efficiency of the LTC operation in diesel engines. In this work, a set of field programmable gate array (FPGA) modules were coded and interlaced to suffice on-the-fly combustion event modulations on a cycle-by-cycle basis.
Technical Paper

Effective Ignition of Lean Methane/Hydrogen Mixture in a Rapid Compression Machine

2023-04-11
2023-01-0255
The use of renewable natural gas and green hydrogen can significantly reduce the carbon footprint of engines. For future spark ignition engines, lean burn strategy and high compression ratio need to be adopted to further improve thermal efficiency, reducing energy consumption. The efficacy of the ignition system is essential to initiate self-sustainable flame under those extreme conditions. In this work, a rapid compression machine is employed to compress air-fuel mixture to engine-like boundary conditions before the spark event to experimentally investigate the ignition and combustion characteristics of the methane-air mixtures under extreme lean conditions. Hydrogen is also added to support the ignition process and enhance flame propagation speed. Lean methane-air mixtures with excess air ratio up to 2.8 are used, with 10 vol% hydrogen addition into the methane fuel. The ignition criteria under various ignition strategies are explored.
Technical Paper

Effect of Spark Discharge Duration and Timing on the Combustion Initiation in a Lean Burn SI Engine

2021-04-06
2021-01-0478
Meeting the increasingly stringent emission and fuel efficiency standards is the primary objective of the modern automotive research. Lean/diluted combustion is a promising avenue to realize high-efficiency combustion and reduce emissions in SI engines. Under diluted conditions, the flame propagation speed is reduced because of the reduced charge reactivity. Enhancing in-cylinder charge motion and turbulence, and thereby increasing the flame speed, is a possible way to harness the combustion process in SI engines. However, charge motion can have a significant effect on the spark ignition process because of the reduced discharge duration and frequent restrikes. A longer discharge duration can aid in the formation of a self-sustained flame kernel and subsequent stable ignition. Therefore, an empirical study is undertaken to investigate the effect of discharge duration and ignition timing on the ignition and early combustion in a port fueled SI engine, operated under lean conditions.
Technical Paper

Discharge Current Management for Diluted Combustion under Forced Flow Conditions

2020-04-14
2020-01-1118
Lean burn or EGR diluted combustion with enhanced charge motion is effective in improving the efficiency of spark ignition engines. However, the ignition process under these conditions is getting more challenging due to higher ignition energy required by the lean or diluted mixture, as well as the interactions of the gas flow on the flame kernel. Enhanced spark discharge energy is essential to initiate the combustion under these conditions. Moreover, the discharge process should be more carefully controlled to improve the effectiveness of the spark. In this study, spark ignition systems with boosted discharge energy are used to ignite diluted air-fuel mixture under forced flow conditions. The impacts of the discharge current level, the discharge duration and the discharge current profile on the ignition are investigated in detail using optical diagnosis.
X