Refine Your Search

Topic

Search Results

Standard

Zinc Die Casting Alloys

2017-12-20
CURRENT
J469_201712
Because of the drastic chilling involved in die casting and the fact that the solid solubilities of both aluminum and copper in zinc change with temperature, these alloys are subject to some aging changes, one of which is a dimensional change. Both of the alloys undergo a slight shrinkage after casting, which at room temperature is about two-thirds complete in five weeks. It is possible to accelerate this shrinkage by a stabilizing anneal, after which no further changes occur. The recommended stabilizing anneal is 3 to 6 h at 100 °C (212 °F), or 5 to 10 h at 85 °C (185 °F), or 10 to 20 h at 70 °C (158 °F). The time in each case is measured from the time at which the castings reach the annealing temperature. The parts may be air cooled after annealing. Such a treatment will cause a shrinkage (0.0004 in per in) of about two-thirds of the total, and the remaining shrinkage will occur at room temperature during the subsequent few weeks.
Standard

ZINC DIE CASTING ALLOYS

1989-01-01
HISTORICAL
J469_198901
Because of the drastic chilling involved in die casting and the fact that the solid solubilities of both aluminum and copper in zinc change with temperature, these alloys are subject to some aging changes, one of which is a dimensional change. Both of the alloys undergo a slight shrinkage after casting, which at room temperature is about two-thirds complete in five weeks. It is possible to accelerate this shrinkage by a stabilizing anneal, after which no further changes occur. The recommended stabilizing anneal is 3 to 6 h at 100 °C (212 °F), or 5 to 10 h at 85 °C (185 °F), or 10 to 20 h at 70 °C (158 °F). The time in each case is measured from the time at which the castings reach the annealing temperature. The parts may be air cooled after annealing. Such a treatment will cause a shrinkage (0.0004 in per in) of about two-thirds of the total, and the remaining shrinkage will occur at room temperature during the subsequent few weeks.
Standard

Wrought copper and Copper Alloys

2002-12-20
HISTORICAL
J463_200212
This standard1 describes the chemical, mechanical, and dimensional requirements for a wide range of wrought copper and copper alloys used in the automotive and related industries.
Standard

Wrought Copper and Copper Alloys

2018-01-10
CURRENT
J463_201801
This standard1 describes the chemical, mechanical, and dimensional requirements for a wide range of wrought copper and copper alloys used in the automotive and related industries.
Standard

WROUGHT NICKEL AND NICKEL-RELATED ALLOYS

1976-07-01
HISTORICAL
J470C_197607
This Report presents general information on over 50 alloys in which nickel either predominates or is a significant alloying element. It covers primarily wrought materials, and is not necessarily all inclusive. Values given are in most cases average or nominal, and if more precise values are required the producer(s) should be contacted. This report does not cover the so-called "superalloys," or the iron base stainless steels. Refer to SAE J467, Special Purpose Alloys, and SAE J405, Chemical Compositions of SAE Wrought Stainless Steels, respectively, for data on these alloys.
Standard

WROUGHT COPPER AND COPPER ALLOYS

1976-06-01
HISTORICAL
J463D_197606
This standard* describes the chemical, mechanical, and dimensional requirements for a wide range of wrought copper and copper alloys used in the automotive and related industries.
Standard

WROUGHT ALUMINUM APPLICATIONS GUIDELINES

1983-06-01
HISTORICAL
J1434_198306
This report approaches the material selection process from the designer’s viewpoint. Information is presented in a format designed to guide the user through a series of decision-making steps. “Applications criteria” along with engineering and manufacturing data are emphasized to enable the merits of aluminum for specific applications to be evaluated and the appropriate alloys and tempers to be chosen.
Standard

VALVE GUIDE INFORMATION REPORT

1993-09-10
HISTORICAL
J1682_199309
This SAE Information Report provides: a Types of valve guides and their nomenclature b Valve guide alloy designations and their chemistries c Valve guide alloy metallurgy d Typical mechanical and physical properties of guide alloys e Typical dimensional tolerances of valve guides and their counterbores f Recommended interference fits g Installation procedures h Application considerations
Standard

Use of Terms Yield Strength and Yield Point

2017-10-10
CURRENT
J450_201710
The purpose of this SAE Recommended Practice is to describe the terms yield strength and yield point. Included are definitions for both terms and recommendations for their use and application.
Standard

Ultrasonic Inspection

2018-01-09
CURRENT
J428_201801
The scope of this SAE Information report is to provide basic information on ultrasonics, as applied in the field of nondestructive inspection. References to detailed information are listed in Section 2.
Standard

ULTRASONIC INSPECTION

1991-03-01
HISTORICAL
J428_199103
The scope of this SAE Information report is to provide basic information on ultrasonics, as applied in the field of nondestructive inspection. References to detailed information are listed in Section 2.
Standard

Tensile Test Specimens

1999-05-20
CURRENT
J416_199905
When required, unless otherwise specified in the SAE Standards or Recommended Practices, tensile test specimens for metals shall be selected and prepared in accordance with this report. ASTM E 8, Methods of Tension Testing of Metallic Materials, gives more detailed information on tensile testing procedure, and ASTM E 4, Methods of Load Verification of Testing Machines, provides information on testing equipment calibration. In recommending these specimens for use in tensile tests it is not intended to exclude entirely the use of other test specimens for special materials or for special forms of material. It is, however, recommended that these specimens be used wherever it is feasible. Machining of specimens shall be done in such a manner as to avoid leaving severe machining strains in the material. Specimens shall be finished so that the surfaces are smooth and free from nicks and tool marks. All ragged edges shall be smoothed.
Standard

Surface Hardness Testing with Files

2018-01-10
CURRENT
J864_201801
Hardness testing with files consists essentially of cutting or abrading the surface of metal parts, and approximating the hardness by the feel, or extent to which, the file bites into the surface. The term "file hard" means that the surface hardness of the parts tested is such that a new file of proven hardness will not cut the surface of the material being tested.
Standard

Standardized Dent Resistance Test Procedure

2015-04-28
CURRENT
J2575_201504
These test procedures were developed based upon the knowledge that steel panel dent resistance characteristics are strain rate dependent. The “quasi-static” section of the procedure simulates real world dent phenomena that occur at low indenter velocities such as palm-printing, elbow marks, plant handling, etc. The indenter velocity specified in this section of the procedure is set to minimize material strain rate effects. The dynamic section of the procedure simulates loading conditions that occur at higher indenter velocities, such as hail impact, shopping carts, and door-to-door parking lot impact. Three dent test schedules are addressed in this procedure. Schedule A is for use with a specified laboratory prepared (generic) panel, Schedule B is for use with a formed automotive outer body panel or assembly, and Schedule C addresses end product or full vehicle testing.
Standard

Special Purpose Alloys ("Superalloys")

2018-02-15
CURRENT
J467B_201802
The data given in Tables 1–4 are typical values only and are not intended for design parameters. Mechanical properties of the special purpose alloys depend greatly upon processing variables and heat treatment. It is recommended that design data be obtained by actual testing or by consultation with the producers of the alloys.
Standard

Sintered Tool Materials

2017-12-20
CURRENT
J1072_201712
This SAE Recommended Practice covers the identification and classification of ceramic, sintered carbide, and other cermet tool products. Its purpose is to provide a standard method for designating the characteristics and properties of sintered tool materials.
X