Refine Your Search

Topic

Search Results

Standard

Use of HVOF Thermal Spray Coatings for Hard Chrome Replacement in Landing Gear Applications

2013-10-25
CURRENT
ARP5935
Electrolytically deposited chrome plate is the current standard surface treatment for landing gear component interface surfaces that require good wear resistance and corrosion protection. Chrome plated components are typically plagued by a slight debit in fatigue performance, detrimental mud cracking surface pattern, susceptibility to scoring, wear, and seal leakage. In addition, recent changes in environmental compliance standards place further restrictions on the use of electrolytically deposited chromium. Some commercial applications have already eliminated the use of chrome plate on current and future products. As a result, a substitute for electrolytically deposited chrome plate has been sought for several years. High Velocity Oxygenated Fuel (HVOF) thermal spray coatings have been developed to the point where they are being implemented as an alternative to hard chrome plate on high strength low alloy steels for external surfaces on landing gear applications.
Standard

SKID CONTROL PERFORMANCE EVALUATION

1968-03-01
HISTORICAL
ARP862
This document provides recommended methods for measuring performance of skid control systems. It includes test items and equipment.
Standard

Rotorcraft: Application of Existing Aircraft Designed Tires, Wheels and Brakes

2021-04-23
CURRENT
ARP5632
This document covers recommendations for the application of existing qualified and approved in-service fixed wing aircraft tires, wheels and brakes to military and commercial rotorcraft. NOTE: This document does not address the use of radial tires due to insufficient data to support their approved use on rotorcraft, see paragraph 4.3.14 for specific impact on ground resonance.
Standard

Landing Gear Structural Health Monitoring

2019-05-23
CURRENT
AIR6168A
This SAE Aerospace Information Report (AIR) discusses past and present approaches for monitoring the landing gear structure and shock absorber (servicing), opportunities for corrosion detection, methods for transient overload detection, techniques for measuring the forces seen by the landing gear structure, and methods for determining the fatigue state of the landing gear structure. Landing gear tire condition and tire pressure monitoring are detailed in ARP6225, AIR4830, and ARP6137, respectively. Aircraft Brake Temperature Monitoring Systems (BTMS) are detailed in AS1145.
Standard

Landing Gear Storage

2021-04-23
CURRENT
ARP5936
This document categorizes the different types of storage requirements, either on the aircraft or new unused or overhauled on the shelf, for aircraft landing gears/components. Recommendations and examples of proper landing gear storage are outlined. Reclamation recommendations are provided for aircraft landing gear returning from long-term storage.
Standard

Landing Gear Alignment

2021-04-23
CURRENT
AIR5556
The purpose of this Aerospace Information Report is to provide the industry with methodologies for measuring tire/wheel gear alignment and the range of acceptable alignment settings for various types of non-military landing gear. This AIR will focus on the general aviation, corporate, and regional aircraft landing gear but could have applicability to commercial aircraft.
Standard

Landing Gear (Engine Off) Taxi System

2021-02-03
CURRENT
AIR6246
This SAE Aerospace Information Report (AIR) will review new landing gear (engine off) taxi system technologies currently being developed by various companies and describe the basic design concepts and potential benefits and issues. This AIR will identify the associated systems that could be affected by this new technology. The document will review basic design and operational requirements, failure modes and identify system certification requirements that may need to be addressed. The technology is evolving as this paper is being written and the data present is currently up to date as of 2015.
Standard

Inflator Assembly and Gage Elements, Pneumatic Pressure, Remote Control, Direct Reading

2018-04-09
CURRENT
AS85352A
This specification covers a direct reading, remote control, pneumatic pressure inflator assembly, for use on aircraft tires and struts having pneumatic pressure requirements up to 600 psi. It includes pressure relief provisions to provide for safe inflation. Also included are dual chuck stem gages for measuring tire pressure.
Standard

Inflator Assembly and Gage Elements, Pneumatic Pressure, Remote Control, Direct Reading

2011-01-14
HISTORICAL
AS85352
This specification covers a direct reading, remote control, pneumatic pressure inflator assembly, for use on aircraft tires and struts having pneumatic pressure requirements up to 600 psi. It includes pressure relief provisions to provide for safe inflation. Also included are dual chuck stem gages for measuring tire pressure.
Standard

GLAND DESIGN: SCRAPER, LANDING GEAR, INSTALLATION

1994-04-01
HISTORICAL
AS4052
This SAE Aerospace Standard (AS) covers an alternate gland design for the installation of scraper/wiper rings in the lower end of landing gear shock struts for the purpose of contaminant exclusion. The defined scraper gland covered by this document, as shown in Table 1, is a variant of MIL-G-5514, the accepted gland standard for MS28775. Piston diameters, gland internal diameters, and the groove sidewall angles and surface finish are defined by MIL-G-5514, but the gland outer retaining wall diameter is changed. AS4088 is similar to this document, but was developed by SAE A-6 for flight control and general purpose cylinders. It differs from this document primarily by the clearance between the rod (piston) and outer gland wall. Since landing gears are more susceptible to dirt contamination, the additional clearance provides a larger path to allow excessive dirt accumulation to exit the gland.
Standard

Environmentally Compliant Processes for Landing Gear

2022-09-08
CURRENT
AIR5479B
This SAE Aerospace Information Report (AIR) describes the performance of plating’s and coatings for landing gear that potentially provide environmental compliance benefits versus the current baseline processes. The hazardous systems addressed in this version of the document include cadmium plating, chromated primers, and high VOC (volatile organic compounds) topcoats. The AIR applies to landing gear structures and mechanisms for all types of civil and military aircraft. The potential replacements apply to both Original Equipment Manufacturer (OEM) hardware and overhaul of in-service landing gears.
Standard

Environmentally Compliant Processes for Landing Gear

2013-10-25
HISTORICAL
AIR5479A
This SAE Aerospace Information Report (AIR) describes the performance of platings and coatings for landing gear that potentially provide environmental compliance benefits versus the current baseline processes. The hazardous systems addressed in this version of the document include cadmium plating, chromated primers, and high VOC (volatile organic compounds) topcoats. Available data are presented for various standard tests in order to compare the replacement candidates. Conclusions are made as to the best performer(s) for each test section presented. These conclusions are not to be regarded as recommendations for or against any of the candidates. The AIR applies to landing gear structures and mechanisms for all types of civil and military aircraft. The potential replacements apply to both original equipment manufacturer (OEM) hardware and overhaul of in-service landing gears.
Standard

Environmentally Compliant Processes for Landing Gear

2002-02-15
HISTORICAL
AIR5479
This SAE Aerospace Information Report (AIR) describes the performance of platings and coatings for landing gear that potentially provide environmental compliance benefits versus the current baseline processes. The hazardous systems addressed in this version of the document include cadmium plating, chromated primers, and high VOC (volatile organic compounds) topcoats. Available data are presented for various standard tests in order to compare the replacement candidates. Conclusions are made as to the best performer(s) for each test section presented. These conclusions are not to be regarded as recommendations for or against any of the candidates. The AIR applies to landing gear structures and mechanisms for all types of civil and military aircraft. The potential replacements apply to both original equipment manufacturer (OEM) hardware and overhaul of in-service landing gears.
Standard

Effects of Extremely Cold Temperature on Landing Gear Operation

2022-03-29
CURRENT
AIR6411
This SAE Aerospace Information Report (AIR) provides information on landing gear operation in cold temperature environments. It covers all operational aspects during ground handling, takeoff, and landing. It includes effects on tires, brakes, shock struts, seals, and actuators.
Standard

Catalog of Landing Gear Systems and Suppliers

2021-02-03
CURRENT
AIR5631A
The purpose of this document is to provide a listing for current commercial and military aircraft landing gear systems and their types and manufacturers. Data has been provided for the following commercial aircraft types; wide body jet airliners, narrow body jet airliners, and turboprop/commuter aircraft and the following military aircraft types; fighter, bomber, cargo, attack, surveillance, tanker and helicopter categories. The aircraft that have been included in this document are in operational service either with airlines, business, cargo or military operators. No information is presented for aircraft that are currently being developed or that are not in extensive usage. This document will provide an informational reference for landing gear engineers to access when evaluating other gear and aircraft systems. Future revisions of this document will add aircraft as they enter into service.
X