Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

“ZYTEL” NYLON RESIN AND “TEFLON” TETRAFLUOROETHYLENE RESIN AS BEARING MATERIALS

1956-01-01
560190
Both “Zytel” nylon resin and “Teflon” tetrafluoro-ethylene resin are being used extensively as bearing materials. Most of these applications have been developed independently and no attempt has been made to collect performance data in order to put future design on a firm basis. Typical data on dry or partially lubricated bearings have been collected from a variety of sources. Work in our laboratories on lubricated bearings made of “Zytel” are reported for the first time. In addition, physical properties of these materials are described. With these properties and the bearing work done to date, it is believed that the selection of the material and the design of bearings can be done with greater accuracy.
Technical Paper

“Sky Hooks” for Automobiles

1935-01-01
350109
IN this paper the authors present some experimental results obtained by using the analysis outlined by Prof. James J. Guest before the Institution of Automobile Engineers, in 1926. To make the experimental work more understandable, they present the essential points of Professor Guest's analysis. Professor Guest begins his analysis of the movements of a car body with the simplest set of conditions and presents a graphical as well as an algebraic solution. He then includes one additional factor after another in his analysis until the principal factors in car suspension are included. After all factors are considered, the essential structure of the simple analysis is retained. The authors' efforts at the experimental determination of the moment of inertia of passenger cars were started in January, 1932, on Sir Charles Dennistoun Burney's “tear-drop” design with which he visited leading American manufacturers.
Technical Paper

“Second-Generation” SAE 5W-30 Passenger Car Engine Oils

1986-10-01
861515
High performance lubricant additive systems have been developed to formulate SAE 5W-30 passenger car engine oils which meet current and anticipated requirements of the North American original equipment manufacturers. The trend in North America is to recommend SAE 5W-30 oils that not only meet the API SF requirements for gasoline engines (“first-generation” oils), but also meet the stringent API CC requirement for light duty diesel engines (“second-generation” oils). Furthermore, the engine builders have issued “world specifications” for motor oils which incorporate additional “second-generation” SAE 5W-30 characteristics, such as enhanced API SF limits, improved fuel efficiency, an increased margin of bearing protection, and lower finished-oil phosphorus levels. The additive systems described herein exceed API SF and CC requirements as well as “second-generation” performance hurdles.
Technical Paper

“Phoenix”- A Polyester-Film Inflatable Man-Powered Aircraft

1984-02-01
840028
This paper describes some of the design solutions adopted in solving two major problems besetting man-powered aircraft in use: that of breakage and storage. It describes work leading up to the building and testing of “Phoenix”, a man-powered aircraft with a polyester-film inflatable wing. The paper deals mainly with aspects relating to the wing design and construction.
Technical Paper

“Optimization” of Lower Deck Cargo Systems

1988-05-01
880973
The ability to carry cargo efficiently in passenger aircraft has influenced airline economics to the point that optimisation of the freight capacity is mandatory. This document discusses the alternative loading possibilities in defined Lover Deck Compartments and their doors to cater for current and future trends in ULD dimensions. As a result items for study centred on: 1) Optimisation of the available volumes Freight capacity resulting in the selection of “Pallets”-doors for both the Forward and AFT Compartments. Flexibility to meet Freight and Baggage requirements. Possible load arrangements to optimize aircraft C of G 2) Bulk Cargo Compartment Additional LD3 Container position in AFT/Bulk compartment to cater for an uneven number of Baggage container, allowing the carriage of an additional pallet. What is regarded as an optimum is presented.
Technical Paper

“Herschel-Quincke Spiral” A New Interference Silencer

2003-05-05
2003-01-1722
Over the last ten years there has been a steady growth in the market share of light-duty diesel engines, especially in Europe. At the same time, a general trend in petrol engine development has been seen, in which normal aspirated engines are being replaced by downsized turbocharged engines. Therefore, NVH engineers have to deal with new challenges. Turbochargers produce an aerodynamic noise in the frequency range above 1000Hz, which might influence the exterior and interior noise level. As a result, the additional requirement for acoustical components to reduce this flow noise is going to pose an increasing challenge for air intake system suppliers. This paper describes a new design of well-known wide band silencer first mentioned by A. Selamet, N.S.Dickey and J.M.Novak [1,2]. The silencer works according to the interference principle. The sound is guided into two or more parallel pipes of different lengths.
Technical Paper

“Dynamic Analysis of Cabin Tilting System of Heavy Trucks Using ADAMS-View for Development of a Software Interface for Optimization”

2008-10-07
2008-01-2683
Design of a Cabin Tilting System of heavy trucks, a multi degree of freedom mechanism, is a challenge. Factors like adequate tilting angle, cabin styling, packaging, non interference of tilting system with ride comfort, forces in the system, specifications of the hydraulic system, are all very important for designing the system. Numerous considerations make the design process highly iterative hence longer design time. This paper primarily focuses on Kinematics and Dynamic analysis of the system in ADAMS and validation of system with real time testing results. Intention of this work is to make a parametric ADAMS model and link it to a Knowledge Based Engineering application to facilitate designer to quickly carry out design iterations for reducing development time. The Knowledge Based Engineering software is made using object oriented language called ‘Object Definition Language’ which has been developed using C and C++ software languages.
Technical Paper

“Buckling” Failure Assessment for Long Cylinders

1976-02-01
760641
A new method for the structural study of long hydraulic cylinders has been developed. The rational analysis, taking cognizance of most known conditions and disturbances, is capable of an iterative type solution by computer. Some examples of its use are given, illustrating the effects of stroke length and mounting position on stresses, deflections, internal bearing loads, and critical axial load.
Technical Paper

‘Almost’ Real-Time Diagnosis and Correction of Manufacturing Scrap Using an Expert System

1987-04-07
870905
This paper describes preliminary findings on an expert system that uses both operator and transducer inputs in ‘almost’ real-time to diagnose scrap type and recommend corrective action to reduce/eliminate further production of this scrap type. During the development of the expert system, equal consideration was given to hardware installation and debugging; system architecture, logic, and triggering; and knowledge acquisition. The system is applied to a specific manufacturing process; however, the ideas are applicable to a wide range of problems in the production environment.
Technical Paper

basic design of Turbochargers for diesel engines

1960-01-01
600007
ALTHOUGH turbocharging of low-speed diesel engines has been used world-wide for a long time, it is only during recent years that it has been applied to high-speed diesels. This is the result of considerable engineering efforts from both the turbocharger and the diesel side that were put into the turbocharger, which appears to be a so utterly simple device. This paper de­scribes some of these engineering efforts. The basic design characteristics are developed with the point of view in mind that the turbo­charger has become much more than just an ad­ditional accessory. It is a vital component of the basic engine itself, contributing actively to the advancement of this prime mover. The basic de­sign characteristics center heavily around aero­dynamical and thermodynamical performance cri­teria which are so important in any advanced high-speed turbomachine.
Technical Paper

Zero-Gravity Testing of a Waste Management System

1969-02-01
690644
This paper describes the testing of a waste management system designed and fabricated for use in a space vehicle. The system provides for the collection and inactivation of urine, feces, emergency diarrheal disorders, vomitus, and debris; the volumetric determination of each micturition; and onboard storage of the inactivated wastes within the waste management system compartment. The zero-gravity test program conducted in a KC-135 aircraft provided the primary verification of the performance of the waste collection and urine volume determination functions prior to actual space flight. The test hardware simulated the actual system to a high degree of fidelity with respect to operational characteristics of the airflow required in collection, mechanical functions and system pressure differentials, in order to minimize simulation errors.
Technical Paper

Zero-Delay Light-Off - A New Cold-Start Concept with a Latent Heat Storage Integrated into a Catalyst Substrate

2007-04-16
2007-01-1074
This study aims at a new concept for a fast catalyst light-off in combining a latent heat storage with a catalyst. The arrangement of a latent heat storage device into the exhaust system offers significant benefits for the catalyst light-off. Different arrangements have been examined. The first arrangement, called the sequential arrangement, comprises a latent heat storage device and a subsequent catalyst. This offers a significantly faster heat up of the catalyst compared to the standard arrangement. By that emissions during the cold start phase can be significantly reduced. The setup of the latent heat storage device is designed for a high heat transfer between storage material and the exhaust gas. A second integrated arrangement of a latent heat storage and a catalyst into one common substrate has also been set up and investigated. The main advantage of this arrangement is that the catalyst itself is kept on its operation temperature during the engine off time.
Technical Paper

Zero Gases for Emission Monitoring - Production, Storage, Treatment and Usage

2002-10-21
2002-01-2712
Increasingly stringent emission levels require better quality facility gas supplies to enable more precise measurements at low levels and reduce variation in test results. The transient and steady state quality of the “zero gas” used in analyzer calibration will directly affect the level of the readings, while variation in the “zero gas” over time will increase the number of tests needed to meet statistical requirements. Facility zero gas supplies for air and nitrogen, at a minimum, require careful evaluation to confirm that the required gas quality is delivered to the test equipment for the desired instrument accuracy. To move from LEV or ULEV to SULEV analysis, a change in methodology of zero gas generation, delivery and handling may be needed to achieve the desired measurement accuracy and repeatability. Traditional tubing, fittings and handling methods can not only limit the possible gas quality, but also contribute to variation.
Technical Paper

Yields Of Salad Crops Grown Under Potential Lunar Or Mars Habitat Environments: Effect Of Temperature And Lighting Intensities

2006-07-17
2006-01-2029
Growth Temperatures And Lighting Intensity Are Key Factors That Directly Impact The Design, Engineering, And Horticultural Practices Of Sustainable Life-Support Systems For Future Long-Term Space Missions. The Effects Of Exposure Of Lettuce (Cv. Flandria), Radish (Cv. Cherry Bomb Ii). And Green Onion (Cv. Kinka) Plants To Controlled Environment Temperatures (Constant Day/Night Temperature Of 22, 25, Or 28 °C) And Lighting Intensities (8.6, 17.2, Or 25.8 Mol M−2 D−1 Photosynthetic Photon Flux [Ppf]) At Elevated Co2 (1200 µMol Mol−1) Was Investigated To Ascertain Overall Yield Responses. Following 35 Days Growth, The Yields Of Lettuce Indicated That Increasing The Growing Temperature From 22 To 28°C Slightly Increased The Edible Fresh Mass Of Individual Plants. However, Even Though Lettuce Plants Grown Under High Ppf Had The Highest Fresh Mass, The Resultant Increase In The Incidence And Severity Of Tipburn Reduced The Overall Quality Of The Lettuce Head.
X