Refine Your Search

Topic

Search Results

Technical Paper

A 5-Zone Model to Improve the Diagnosis Capabilities of a Rapid Compression-Expansion Machine (RCEM) in Autoignition Studies

2017-03-28
2017-01-0730
In this work, a 5-zone model has been applied to replicate the in-cylinder conditions evolution of a Rapid Compression-Expansion Machine (RCEM) in order to improve the chemical kinetic analyses by obtaining more accurate simulation results. To do so, CFD simulations under motoring conditions have been performed in order to identify the proper number of zones and their relative volume, walls surface and temperature. Furthermore, experiments have been carried out in an RCEM with different Primary Reference Fuels (PRF) blends under homogeneous conditions to obtain a database of ignition delays and in-cylinder pressure and temperature evolution profiles. Such experiments have been replicated in CHEMKIN by imposing the heat losses and volume profiles of the experimental facility using a 0-D 1-zone model. Then, the 5-zone model has been analogously solved and both results have been compared to the experimental ones.
Journal Article

A Progress Review on Soot Experiments and Modeling in the Engine Combustion Network (ECN)

2016-04-05
2016-01-0734
The 4th Workshop of the Engine Combustion Network (ECN) was held September 5-6, 2015 in Kyoto, Japan. This manuscript presents a summary of the progress in experiments and modeling among ECN contributors leading to a better understanding of soot formation under the ECN “Spray A” configuration and some parametric variants. Relevant published and unpublished work from prior ECN workshops is reviewed. Experiments measuring soot particle size and morphology, soot volume fraction (fv), and transient soot mass have been conducted at various international institutions providing target data for improvements to computational models. Multiple modeling contributions using both the Reynolds Averaged Navier-Stokes (RANS) Equations approach and the Large-Eddy Simulation (LES) approach have been submitted. Among these, various chemical mechanisms, soot models, and turbulence-chemistry interaction (TCI) methodologies have been considered.
Technical Paper

An Experimental Assessment of Turbulence Production, Reynolds Stress and Length Scale (Dissipation) Modeling in a Swirl-Supported DI Diesel Engine

2003-03-03
2003-01-1072
Simultaneous measurements of the radial and the tangential components of velocity are obtained in a high-speed, direct-injection diesel engine typical of automotive applications. Results are presented for engine operation with fuel injection, but without combustion, for three different swirl ratios and four injection pressures. With the mean and fluctuating velocities, the r-θ plane shear stress and the mean flow gradients are obtained. Longitudinal and transverse length scales are also estimated via Taylor's hypothesis. The flow is shown to be sufficiently homogeneous and stationary to obtain meaningful length scale estimates. Concurrently, the flow and injection processes are simulated with KIVA-3V employing a RNG k-ε turbulence model. The measured turbulent kinetic energy k, r-θ plane mean strain rates ( 〈Srθ〉, 〈Srr〉, and 〈Sθθ〉 ), deviatoric turbulent stresses , and the r-θ plane turbulence production terms are compared directly to the simulated results.
Journal Article

An Experimental Study on Diesel Spray Injection into a Non-Quiescent Chamber

2017-03-28
2017-01-0850
Visualization of single-hole nozzles into quiescent ambient has been used extensively in the literature to characterize spray mixing and combustion. However in-cylinder flow may have some meaningful impact on the spray evolution. In the present work, visualization of direct diesel injection spray under both non-reacting and reacting operating conditions was conducted in an optically accessible two-stroke engine equipped with a single-hole injector. Two different high-speed imaging techniques, Schlieren and UV-Light Absorption, were applied here to quantify vapor penetration for non-reacting spray. Meanwhile, Mie-scattering was used to measure the liquid length. As for reacting conditions, Schlieren and OH* chemiluminescence were simultaneously applied to obtain the spray tip penetration and flame lift-off length under the same TDC density and temperature. Additionally, PIV was used to characterize in-cylinder flow motion.
Technical Paper

Application of Schlieren Optical Techniques for the Measurement of Gas Temperature and Turbulent Diffusivity in a Diesel Engine

1993-03-01
930869
A new technique which is based on optoacoustic phenomena has been developed for measuring in-cylinder gas temperature and turbulent diffusivity. In the experiments, a high energy Nd:YAG pulsed laser beam was focused to cause local ionization of air at a point in the combustion chamber. This initiates a shock wave and creates a hot spot. The local temperature and turbulent diffusivity are determined by monitoring the shock propagation and the hot spot growth, respectively, with a schlieren photography system. In order to assess the validity and accuracy of the measurements, the technique was also applied to a turbulent jet. The temperature measurements were found to be accurate to within 3%. Results from the turbulent jet measurements also showed that the growth rate of the hot spot diameter can be used to estimate the turbulent diffusivity. In-cylinder gas temperature measurements were made in a motored single cylinder Caterpillar diesel engine, modified for optical access.
Technical Paper

Assessment of RNG Turbulence Modeling and the Development of a Generalized RNG Closure Model

2011-04-12
2011-01-0829
RNG k-ε closure turbulence dissipation equations are evaluated employing the CFD code KIVA-3V Release 2. The numerical evaluations start by considering simple jet flows, including incompressible air jets and compressible helium jets. The results show that the RNG closure turbulence model predicts lower jet tip penetration than the "standard" k-ε model, as well as being lower than experimental data. The reason is found to be that the turbulence kinetic energy is dissipated too slowly in the downstream region near the jet nozzle exit. In this case, the over-predicted R term in RNG model becomes a sink of dissipation in the ε-equation. As a second step, the RNG turbulence closure dissipation models are further tested in complex engine flows to compare against the measured evolution of turbulence kinetic energy, and an estimate of its dissipation rate, during both the compression and expansion processes.
Journal Article

Comparison of the Diffusive Flame Structure for Dodecane and OMEX Fuels for Conditions of Spray A of the ECN

2020-09-15
2020-01-2120
A comparison of the flame structure for two different fuels, dodecane and oxymethylene dimethyl ether (OMEX), has been performed under condition of Spray A of the Engine Combustion Network (ECN). The experiments were carried out in a constant pressure vessel with wide optical access, at high pressure and temperature and controlled oxygen concentration. The flame structure analysis has been performed by measuring the formaldehyde and OH radical distributions using planar Laser-Induced Fluorescence (PLIF) techniques. To complement the analysis, this information was combined with that obtained with high-speed imaging of OH* chemiluminescence radiation in the UV. Formaldehyde molecules are excited with the 355-nm radiation from the third harmonic of a Nd:YAG laser, whilst OH is excited with a wavelength of 281.00-nm from a dye laser.
Technical Paper

Effects of Initial Conditions in Multidimensional Combustion Simulations of HSDI Diesel Engines

1999-03-01
1999-01-1180
The effects of numerical methodology in defining the initial conditions and simulating the compression stroke in D.I. diesel engine CFD computations are studied. Lumped and pointwise approaches were adopted in assigning the initial conditions at IVC. The lumped approach was coupled with a two-dimensional calculation of the compression stroke. The pointwise methodology was based on the results of an unsteady calculation of the intake stroke performed by using the STAR-CD code in the realistic engine and port geometry. Full engine and 60 deg. sector meshes were used in the compression stroke calculations in order to check the accuracy of the commonly applied axi-symmetric fluid dynamics assumption. Analysis of the evolution of the main fluid dynamics parameters revealed that local conditions at the time of injection strongly depend on the numerical procedure adopted.
Technical Paper

Experimental Assessment of Reynolds-Averaged Dissipation Modeling in Engine Flows

2007-09-16
2007-24-0046
The influence of the constant C3, which multiplies the mean flow divergence term in the model equation for the turbulent kinetic energy dissipation, is examined in a motored diesel engine for three different swirl ratios and three different spatial locations. Predicted temporal histories of turbulence energy and its dissipation are compared with experimentally-derived estimates. A “best-fit” value of C3 = 1.75, with an approximate uncertainty of ±0.3 is found to minimize the error between the model predictions and the experiments. Using this best-fit value, model length scale behavior corresponds well with that of measured velocity-correlation integral scales during compression. During expansion, the model scale grows too rapidly. Restriction of the model assessment to the expansion stroke suggests that C3 = 0.9 is more appropriate during this period.
Technical Paper

Formaldehyde Visualization Near Lift-off Location in a Diesel Jet

2006-10-16
2006-01-3434
Formaldehyde (HCHO) near the lift-off location in a reacting diesel jet was visualized using planar laser-induced fluorescence (PLIF). Simultaneous imaging of OH chemiluminescence identified the high-temperature combustion region (lift-off). Experiments were performed in a constant-volume combustion vessel at ambient gas conditions (temperature and oxygen concentration) that generate no-soot, low-soot and moderate-soot diesel jets during mixing-controlled combustion. For no-soot conditions, results show that HCHO is formed upstream of the lift-off location and is consumed downstream of the lift-off length in fuel-rich premixed reaction zones at the jet center. Despite the fuel-rich combustion, and downstream regions that are surrounded by a high-temperature diffusion flame, there is no detectable PAH formation in the no-soot condition.
Technical Paper

Intake Flow Simulation and Comparison with PTV Measurements

1999-03-01
1999-01-0176
Intake flow simulations were carried out for a prototype DISI engine using the standard k-ε model and the RNG k-ε model. The results were compared with PTV (transient water analog) measurements. The study was focused on low load operations with engine speed at 400 rev/min. Two cases were studied, a single intake case in which one intake port was blocked and a dual intake port case. In the computations, the results show that the standard k-ε model tends to produce higher turbulence levels when turbulence is generated and decays faster when turbulence dissipates. Different turbulence models predict almost the same flow structures. However, the effects of the turbulence model on the predicted tumble and swirl ratios are significant. The TKE distributions at BDC predicted by the two models are also different. The standard k-ε model seems to be more diffusive. Good agreements with PTV data were obtained in the single valve case with the RNG k-ε model.
Technical Paper

Late-Cycle Turbulence Generation in Swirl-Supported, Direct-Injection Diesel Engines

2002-03-04
2002-01-0891
Cycle-resolved analysis of velocity data obtained in the re-entrant bowl of a fired high-;speed, direct-injection diesel engine, demonstrates an unambiguous, approximately 100% increase in late-cycle turbulence levels over the levels measured during motored operation. Model predictions of the flow field, obtained employing RNG k-ε turbulence modeling in KIVA-3V, do not capture this increased turbulence. A combined experimental and computational approach is taken to identify the source of this turbulence. The results indicate that the dominant source of the increased turbulence is associated with the formation of an unstable distribution of mean angular momentum, characterized by a negative radial gradient. The importance of this source of flow turbulence has not previously been recognized for engine flows. The enhanced late-cycle turbulence is found to be very sensitive to the flow swirl level.
Technical Paper

Modeling the Effects of Geometry Generated Turbulence on HCCI Engine Combustion

2003-03-03
2003-01-1088
The present study uses a numerical model to investigate the effects of flow turbulence on premixed iso-octane HCCI engine combustion. Different levels of in-cylinder turbulence are generated by using different piston geometries, namely a disc-shape versus a square-shape bowl. The numerical model is based on the KIVA code which is modified to use CHEMKIN as the chemistry solver. A detailed reaction mechanism is used to simulate the fuel chemistry. It is found that turbulence has significant effects on HCCI combustion. In the current engine setup, the main effect of turbulence is to affect the wall heat transfer, and hence to change the mixture temperature which, in turn, influences the ignition timing and combustion duration. The model also predicts that the combustion duration in the square bowl case is longer than that in the disc piston case which agrees with the measurements.
Technical Paper

Modeling the Effects of Intake Flow Structures on Fuel/Air Mixing in a Direct-injected Spark-Ignition Engine

1996-05-01
961192
Multidimensional computations were carried out to simulate the in-cylinder fuel/air mixing process of a direct-injection spark-ignition engine using a modified version of the KIVA-3 code. A hollow cone spray was modeled using a Lagrangian stochastic approach with an empirical initial atomization treatment which is based on experimental data. Improved Spalding-type evaporation and drag models were used to calculate drop vaporization and drop dynamic drag. Spray/wall impingement hydrodynamics was accounted for by using a phenomenological model. Intake flows were computed using a simple approach in which a prescribed velocity profile is specified at the two intake valve openings. This allowed three intake flow patterns, namely, swirl, tumble and non-tumble, to be considered. It was shown that fuel vaporization was completed at the end of compression stroke with early injection timing under the chosen engine operating conditions.
Technical Paper

Multidimensional Modeling of Spray Atomization and Air-Fuel Mixing in a Direct-Injection Spark-Ignition Engine

1997-02-24
970884
A numerical study of air-fuel mixing in a direct-injection spark-ignition engine was carried out. In this paper, the numerical models are described and grid generation methods to represent a realistic port-valve-chamber geometry is discussed. To model a vaporizing hollow-cone spray resulting from an automotive pressure-swirl injector, a newly developed sheet spray atomization model was used to compute the processes of disintegration of the liquid sheet and breakup of the subsequent drops. Computations were performed of a particular 4-valve pent-roof engine configuration in which the intake process and an early fuel injection scheme were considered. After an analysis of the intake-generated flow structures in this engine configuration, the spray behavior and the spatial and temporal evolution of fuel liquid and vapor phases are characterized.
Technical Paper

Non-Equilibrium Turbulence Considerations for Combustion Processes in the Simulation of DI Diesel Engines

2000-03-06
2000-01-0586
A correction for the turbulence dissipation, based on non-equilibrium turbulence considerations from rapid distortion theory, has been derived and implemented in combination with the RNG k - ε model in a KIVA-based code. This model correction has been tested and compared with the standard RNG k - ε model for the compression and the combustion phase of two heavy duty DI diesel engines. The turbulence behavior in the compression phase shows clear improvements over the standard RNG k - ε model computations. In particular, the macro length scale is consistent with the corresponding time scale and with the turbulent kinetic energy over the entire compression phase. The combustion computations have been performed with the characteristic time combustion model. With this dissipation correction no additional adjustments of the turbulent characteristic time model constant were necessary in order to match experimental cylinder pressures and heat release rates of the two engines.
Technical Paper

On the Dependence of Spray Angle and Other Spray Parameters on Nozzle Design and Operating Conditions

1979-02-01
790494
In the Atomization regime, liquid jets breakup either within the nozzle or immediately upon entering the chamber gas and drops much smaller than the jet diameter are formed. The mechanism of Atomization, which is presently unknown, was investigated by the simultaneous use of two photographic techniques. The initial transient was observed with a 106 frames/s camera and the steady state by a technique similar to spark photography. The experiment range was: liquid pressure 500 to 2500 psia; five mixtures of water and glycerol to vary the liquid viscosity; air, nitrogen, helium, and xenon at up to 600 psia as chamber gases to separate gas pressure from gas density effects; and 14 nozzle designs. Not changed were the temperature (room value), the nozzle diameter (340 μ), and the surface tension (70 dyne/cm).
Technical Paper

Optimization of Injection Rate Shape Using Active Control of Fuel Injection

2004-03-08
2004-01-0530
The effect of injection rate shape on spray evolution and emission characteristics is investigated and a methodology for active control of fuel injection is proposed. Extensive validation of advanced vaporization and primary jet breakup models was performed with experimental data before studying the effects of systematic changes of injection rate shape. Excellent agreement with the experiments was obtained for liquid and vapor penetration lengths, over a broad range of gas densities and temperatures. Also the predicted flame lift-off lengths of reacting diesel fuel sprays were in good agreement with the experiments. After the validation of the models, well-defined rate shapes were used to study the effect of injection rate shape on liquid and vapor penetration, flame lift-off lengths and emission characteristics.
Technical Paper

Particle Image Velocimetry Measurements in the Piston Bowl of a DI Diesel Engine

1994-03-01
940283
Particle Image Velocimetry (PIV) was used to make gas velocity and turbulence measurements in a motored diesel engine. The experiments were conducted using a single-cylinder version of the Caterpillar 3406 production engine. One of the exhaust valves and the fuel injector port were used to provide optical access to the combustion chamber so that modifications to the engine geometry were minimal, and the results are representative of the actual engine. Measurements of gas velocity were made in a plane in the piston bowl using TiO2 seed particles. The light sheet necessary for PIV was formed by passing the beam from a Nd:YAG laser through the injector port and reflecting the beam off a conical mirror at the center of the piston. PIV data was difficult to obtain due to significant out-of-plane velocities. However, data was acquired at 25° and 15° before top dead center of compression at 750 rev/min.
Technical Paper

Pressure-Swirl Atomization in the Near Field

1999-03-01
1999-01-0496
To model sprays from pressure-swirl atomizers, the connection between the injector and the downstream spray must be considered. A new model for pressure-swirl atomizers is presented which assumes little knowledge of the internal details of the injector, but instead uses available observations of external spray characteristics. First, a correlation for the exit velocity at the injector exit is used to define the liquid film thickness. Next, the film must be modeled as it becomes a thin, liquid sheet and breaks up, forming ligaments and droplets. A linearized instability analysis of the breakup of a viscous, liquid sheet is used as part of the spray boundary condition. The spray angle is estimated from spray photographs and patternator data. A mass averaged spray angle is calculated from the patternator data and used in some of the calculations.
X