Refine Your Search

Topic

Search Results

Technical Paper

Studies on Drivers’ Driving Styles Based on Inverse Reinforcement Learning

2018-04-03
2018-01-0612
Although advanced driver assistance systems (ADAS) have been widely introduced in automotive industry to enhance driving safety and comfort, and to reduce drivers’ driving burden, they do not in general reflect different drivers’ driving styles or customized with individual personalities. This can be important to comfort and enjoyable driving experience, and to improved market acceptance. However, it is challenging to understand and further identify drivers’ driving styles due to large number and great variations of driving population. Previous research has mainly adopted physical approaches in modeling drivers’ driving behavior, which however are often very much limited, if not impossible, in capturing human drivers’ driving characteristics. This paper proposes a reinforcement learning based approach, in which the driving styles are formulated through drivers’ learning processes from interaction with surrounding environment.
Technical Paper

Steering Control Based on the Yaw Rate and Projected Steering Wheel Angle in Evasion Maneuvers

2018-04-03
2018-01-0030
When automobiles are at the threat of collisions, steering usually needs shorter longitudinal distance than braking for collision avoidance, especially under the condition of high speed or low adhesion. Thus, more collision accidents can be avoided in the same situation. The steering assistance is in need since the operation is hard for drivers. And considering the dynamic characteristics of vehicles in those maneuvers, the real-time and the accuracy of the assisted algorithms is essential. In view of the above problems, this paper first takes lateral acceleration of the vehicle as the constraint, aiming at the collision avoidance situation of the straight lane and the stable driving inside the curve, and trajectory of the collision avoidance is derived by a quintic polynomial.
Technical Paper

Research on Compensation Redundancy Control for Basic Force Boosting Failure of Electro-Booster Brake System

2020-04-14
2020-01-0216
As a new brake-by-wire solution, the electro-booster (Ebooster) brake system can work with the electronic stability program (ESP) equipped in the real vehicle to realize various excellent functions such as basic force boosting (BFB), active braking and energy recovery, which is promoting the development of smart vehicles. Among them, the BFB is the function of Ebooster's servo force to assist the driver's brake pedal force establishing high-intensity braking pressure. After the BFB function failure of the Ebooster, it was not possible to provide sufficient brake pressure for the driver's normal braking, and eventually led to traffic accidents. In this paper, a compensation redundancy control strategy based on ESP is proposed for the BFB failure of the self-designed Ebooster.
Technical Paper

Regenerative Braking Pedal Decoupling Control for Hydraulic Brake System Equipped with an Electro-Mechanical Brake Booster

2019-04-02
2019-01-1108
Electrification and intelligence are the important development directions of vehicle techniques. The Electro-Mechanical Brake Booster (Ebooster) as a brake booster which is powered by a motor, can be used to replace the traditional vacuum booster. Ebooster not only improves the intelligence level of vehicle braking and significantly improves the braking performance, but also adapts to the application in new energy vehicles and facilitates coordinated regenerative braking. However, Ebooster cannot complete pedal decoupling independently. It needs to cooperate with other components to realize pedal decoupling. In this paper, a pedal decoupling control algorithm for regenerative brake, which is based on the coordination control of Ebooster and ESP, is proposed. First, regenerative braking strategy is designed to distribute the hydraulic brake force and regenerative braking force.
Technical Paper

Recognition and Classification of Vehicle Target Using the Vehicle-Mounted Velodyne LIDAR

2014-04-01
2014-01-0322
This paper describes a novel recognition and classification method of vehicle targets in urban road based on a vehicle-mounted Velodyne HDL64E light detection and ranging (LIDAR) system. The autonomous vehicle will choose different driving strategy according to the surrounding traffic environments to guarantee that the driving is safe, stable and efficient. It is helpful for controller to provide the efficient stagey to know the exact type of vehicle around. So this method concentrates on reorganization and classification the type of vehicle targets so that the controller can provide a safe and efficient driving strategy for autonomous ground vehicles. The approach is targeted at high-speed ground vehicle, so real-time performance of the method plays a critical role. In order to improve the real-time performance, some methods of data preprocessing should be taken to simplify the large-size long-range 3D point clouds.
Technical Paper

Real-Time Automatic Test of AEB with Brake System in the Loop

2018-04-03
2018-01-1450
The limitation of drivers' attention and perception may bring collision dangers, Autonomous Emergency Braking (AEB) can help drivers to avoid the potential collisions through active braking. Since the positive effect of it, motor corporations have begun to equip their vehicles with the system, and regulatory agencies in various countries have introduced test standards. At this stage, the actuator of AEB usually adopts Electronic Stability Program (ESP), but it poor performance of continuous working period and active pressure built-up for all wheels limits its implements. Electromechanical brake booster can realize power assisted brake without relying on the vacuum source and a variety of specific power curves. Moreover it can achieve the active braking with a rapid response, which make it can fulfill requirements of automotive electric and intelligent development.
Technical Paper

Pressure Tracking Control of Electro-Mechanical Brake Booster System

2020-04-14
2020-01-0211
The Electro-Mechanical Brake Booster system (EMBB) is a kind of novel braking booster system, which integrates active braking, regenerative braking, and other functions. It usually composes of a servo motor and the transmission mechanism. EMBB can greatly meet the development needs of vehicle intelligentization and electrification. During active braking, EMBB is required to respond quickly to the braking request and track the target pressure accurately. However, due to the highly nonlinearity of the hydraulic system and EMBB, traditional control algorithms especially for PID algorithm do not work well for pressure control. And a large amount of calibration work is required when applying PID algorithms to pressure control in engineering.
Technical Paper

Pressure Control for Hydraulic Brake System Equipped with an Electro-Mechanical Brake Booster

2018-04-03
2018-01-0829
The Electro-Mechanical Brake Booster (Ebooster) is a critical component of the novel brake system for electric intelligent vehicles. It is independent of engine vacuum source, provides powerful active brake performance and can be combined with electric regenerative braking. In this paper, a brake control algorithm for hydraulic brake system equipped with an Ebooster is proposed. First, the configuration of the Ebooster is introduced and the system model including the permanent magnet synchronous motor (PMSM) and hydraulic brake system is established by Matlab/Simulink. Second, a Four-closed-loop algorithm is introduced for accurate active brake pressure control. Finally, according to the requirement of different brake force, series of simulations are carried out under active braking condition. The results show that the control algorithm introduced in this paper can ensure the brake hydraulic pressure tracking a target value precisely and show a good control performance.
Technical Paper

Personalized Human-Machine Cooperative Lane-Changing Based on Machine Learning

2020-04-14
2020-01-0131
To reduce the interference and conflict of human-machine cooperative control, lighten the operation workload of drivers, and improve the friendliness and acceptability of intelligent vehicles, a personalized human-machine cooperative lane-change trajectory tracking control method was proposed. First, a lane-changing driving data acquisition test was carried out to collect different driving behaviors of different drivers and form the data pool for the machine learning method. Two typical driving behaviors from an aggressive driver and a moderate driver are selected to be studied. Then, a control structure combined by feedforward and feedback control based on Long Short Term Memory (LSTM) and model-based optimum control was introduced. LSTM is a machine learning method that has the ability of memory. It is used to capture the lane-changing behaviors of each driver to achieve personalization. For each driver, a specific personalized controller is trained using his driving data.
Technical Paper

Modelling and Validation for an Electro-Hydraulic Braking System Equipped with the Electro-Mechanical Booster

2018-04-03
2018-01-0828
The intelligent and electric vehicles are the future of vehicle technique. The development of intelligent and electric vehicles also promotes new requirements to many traditional chassis subsystems, including traditional braking system equipped with vacuum boosters. The Electro-Mechanical Booster is an applicable substitute of traditional vacuum booster for future intelligent and electric vehicles. It is independent of engine vacuum source, and can be combined with electric regenerative braking. A complete system model is necessary for system analysis and algorithm developing. For this purpose, the modeling of electro-hydraulic braking system is necessary. In this paper, a detailed electro-hydraulic braking system model is studied. The system consists of an electro-mechanical booster and hydraulic braking system. The electro-mechanical booster which mainly contains a permanent magnet synchronous motor (PMSM) and a set of transmission mechanism is the critical component.
Technical Paper

Model-Based Pneumatic Braking Force Control for the Emergency Braking System of Tractor-Semitrailer

2018-04-03
2018-01-0824
As bottom layer actuator for the AEB system, the active brake system and the brake force control of tractor-semitrailer have been the hot topics recently. In this paper, a set of active pneumatic brake system was designed based on the traditional brake system of tractor-semitrailer, which can realize the active brake of the vehicle under necessary conditions. Then, a precise mathematical model of the active pneumatic brake system was built by referring the flow characteristics of the solenoid valve, and some tests were implemented to verify the accuracy and validity of the active brake system model. Based on the model, an active pneumatic brake pressure control strategy combining the feedforward and feedback controlling modes was designed. By generating the PWM control signal, it can precisely control the desired wheel cylinder brake pressure of the active brake system. Finally, the brake pressure control strategy was validated both by simulation tests and bench tests.
Technical Paper

Integrated Threat Assessment for Trajectory Planning of Intelligent Vehicles

2016-04-05
2016-01-0153
This paper reports an effort to improve plan of vehicle trajectory using an approach with rapidly-exploring random trees (RRT), which has been widely adopted in the prior art for complex and dynamic traffic environment. Design and implement of an integrated threat assessment is presented that evaluates threats of the trajectory. A node and trajectory evaluation index was introduced into the proposed RRT algorithm to connect an appropriate node and select the best trajectory. The contribution of this paper is on the threat assessment that takes into account not only obstacle avoidance but also stability. The simulation is conducted and the results show that the proposed method works as expected and is valid and effective.
Journal Article

Integrated Longitudinal Vehicle Dynamics Control with Tire/Road Friction Estimation

2015-04-14
2015-01-0645
The longitudinal dynamics control is an essential task of vehicle dynamics control. In present, it is usually applied by adjusting the slip ratio of driving wheels to achieve satisfactory performances both in stability and accelerating ability. In order to improve its performances, the coordination of different subsystems such as engine, transmission and braking system has to be considered. In addition, the proposed algorithms usually adopt the threshold methods based on less road condition information for simpleness and quick response, which cannot achieve optimal performance on various road conditions. In this paper, an integrated longitudinal vehicle dynamics control algorithm with tire/road friction estimation was proposed. First, a road identification algorithm was designed to estimate tire forces of driving wheels and the friction coefficient by the method of Kalman Filter and Recursive Least Squares (RLS).
Technical Paper

Identification of Driver Individualities Using Random Forest Model

2017-09-23
2017-01-1981
Driver individualities is crucial for the development of the Advanced Driver Assistant System (ADAS). Due to the mechanism that specific driving operation action of individual driver under typical conditions is convergent and differentiated, a novel driver individualities recognition method is constructed in this paper using random forest model. A driver behavior data acquisition system was built using dSPACE real-time simulation platform. Based on that, the driving data of the tested drivers were collected in real time. Then, we extracted main driving data by principal component analysis method. The fuzzy clustering analysis was carried out on the main driving data, and the fuzzy matrix was constructed according to the intrinsic attribute of the driving data. The drivers’ driving data were divided into multiple clusters.
Journal Article

Function-Based Architecture Design for Next-Generation Automotive Brake Controls

2016-04-05
2016-01-0467
This paper presents a unified novel function-based brake control architecture, which is designed based on a top-down approach with functional abstraction and modularity. The proposed control architecture includes a commands interpreter module, including a driver commands interpreter to interpret driver intention, and a command integration to integrate the driver intention with senor-guided active driving command, state observers for estimation of vehicle sideslip, vehicle speed, tire lateral and longitudinal slips, tire-road friction coefficient, etc., a commands integrated control allocation module which aims to generate braking force and yaw moment commands and provide optimal distribution among four wheels without body instability and wheel lock or slip, a low-level control module includes four wheel pressure control modules, each of which regulates wheel pressure by fast and accurate tracking commanded wheel pressure.
Technical Paper

Fault-Tolerant Control of Brake-by-Wire Systems Based on Control Allocation

2016-04-05
2016-01-0132
Brake-by-wire (BBW) system has drawn a great attention in recent years as driven by rapidly increasing demands on both active brake controls for intelligent vehicles and regenerative braking controls for electric vehicles. However, unlike conversional brake systems, the reliability of the brake-by-wire systems remains to be challenging due to its lack of physical connection in case of system failure. There are various causes for the failure of a BBW system, such as failure of brake controller, loss of sensor signals, failure of communication or even power supply, to name a few. This paper presents a fault-tolerant control under novel control architecture. The proposed control architecture includes a driver command interpreter module, a command integration module, a control allocation module, a fault diagnosis module and state observers. The fault-tolerant control is designed based on a quadratic optimal control method with consideration of actuator constraints.
Technical Paper

Driving Style Identification Strategy Based on DS Evidence Theory

2023-04-11
2023-01-0587
Driving assistance system is regarded as an effective method to improve driving safety and comfort and is widely used in automobiles. However, due to the different driving styles of different drivers, their acceptance and comfort of driving assistance systems are also different, which greatly affects the driving experience. The key to solving the problem is to let the system understand the driving style and achieve humanization or personalization. This paper focuses on clustering and identification of different driving styles. In this paper, based on the driver's real vehicle experiment, a driving data acquisition platform was built, meanwhile driving conditions were set and drivers were recruited to collect driving information. In order to facilitate the identification of driving style, the correlation analysis of driving features is conducted and the principal component analysis method is used to reduce the dimension of driving features.
Technical Paper

Driver Behavior Characteristics Identification Strategy for Adaptive Cruise Control System with Lane Change Assistance

2017-03-28
2017-01-0432
Adaptive cruise control system with lane change assistance (LCACC) is a novel advanced driver assistance system (ADAS), which enables dual-target tracking, safe lane change, and longitudinal ride comfort. To design the personalized LCACC system, one of the most important prerequisites is to identify the driver’s individualities. This paper presents a real-time driver behavior characteristics identification strategy for LCACC system. Firstly, a driver behavior data acquisition system was established based on the driver-in-the-loop simulator, and the behavior data of different types of drivers were collected under the typical test condition. Then, the driver behavior characteristics factor Ks we proposed, which combined the longitudinal and lateral control behaviors, was used to identify the driver behavior characteristics. And an individual safe inter-vehicle distances field (ISIDF) was established according to the identification results.
Technical Paper

Damping Force Optimal Control Strategy for Semi-Active Suspension System

2024-04-09
2024-01-2286
Semi-active suspension system (SASS) could enhance the ride comfort of the vehicle across different operating conditions through adjusting damping characteristics. However, current SASS are often calibrated based on engineering experience when selecting parameters for its controller, which complicates the achievement of optimal performance and leads to a decline in ride comfort for the vehicle being controlled. Linear quadratic constrained optimal control is a crucial tool for enhancing the performance of semi-active suspensions. It considers various performance objectives, such as ride comfort, handling stability, and driving safety. This study presents a control strategy for determining optimal damping force in SASS to enhance driving comfort. First, we analyze the working principle of the SASS and construct a seven-degree-of-freedom model.
Technical Paper

Automatic Drive Train Management System for 4WD Vehicle Based on Road Situation Identification

2018-04-03
2018-01-0987
The slip ratio of vehicle driving wheels is easily beyond a reasonable range in the complex and changeable driving conditions. In order to achieve the adaptive acceleration slip regulation of four-wheel driving (4WD) vehicle, a fuzzy control strategy of Automatic Drive Train Management (ADM) system based on road situation identification was proposed in this paper. Firstly, the influence on the control strategy of ADM system was analyzed from two aspects, which included the different road adhesion coefficients and the vehicle’s ramp driving state. In the meantime several quantitative expressions of relevant control parameters were derived. Secondly, the fuzzy logic control algorithm was adopted to design a road situation identification subsystem and a ramp driving state identification subsystem respectively. The former was based on the μ-S curve model, and the latter was based on the vehicle driving equilibrium equation.
X