Refine Your Search

Topic

Search Results

Technical Paper

The Air Assisted Direct Injection ELEVATE Automotive Engine Combustion System

2000-06-19
2000-01-1899
The purpose of the ELEVATE (European Low Emission V4 Automotive Two-stroke Engine) industrial research project is to develop a small, compact, light weight, high torque and highly efficient clean gasoline 2-stroke engine of 120 kW which could industrially replace the relatively big existing automotive spark ignition or diesel 4-stroke engine used in the top of the mid size or in the large size vehicles, including the minivan vehicles used for multi people and family transportation. This new gasoline direct injection engine concept is based on the combined implementation on a 4-stroke bottom end of several 2-stroke engine innovative technologies such as the IAPAC compressed air assisted direct fuel injection, the CAI (Controlled Auto-Ignition) combustion process, the D2SC (Dual Delivery Screw SuperCharger) for both low pressure engine scavenging and higher pressure IAPAC air assisted DI and the ETV (Exhaust charge Trapping Valve).
Technical Paper

Study on Layered Close Loop Control of 4-Stroke Gasoline HCCI Engine Equipped with 4VVAS

2008-04-14
2008-01-0791
Homogeneous Charge Compression Ignition (HCCI) has the potential of reducing fuel consumption as well as NOx emissions. However, it is still confronted with problems in real-time control system and control strategy for the application of HCCI, which are studied in detail in this paper. A CAN-bus-based distributed HCCI control system was designed to implement a layered close loop control for HCCI gasoline engine equipped with 4VVAS. Meanwhile, a layered management strategy was developed to achieve high real-time control as well as to simplify the couplings between the inputs and the outputs. The entire control system was stratified into three layers, which are responsible for load (IMEP) management; combustion phase (CA50) control and mechanical system control respectively, each with its own specified close loop control strategy. The system is outstanding for its explicit configuration, easy actualization and robust performance.
Technical Paper

Simulation of Urea-SCR Process Applied to Lean-burn SI Engines

2009-11-02
2009-01-2776
Lean-burn combustion in SI engines can significantly reduce fuel consumption but NOx reduction becomes challenging because classic three-way catalyst (TWC) is no more efficient. Urea-SCR is then an interesting alternative solution because of its high NOx conversion efficiency without any additional fuel consumption. The coupling between two SI lean-burn engines (stratified and homogeneous combustion) and a urea-SCR catalyst was simulated on the NEDC cycle. Simulation results showed that the SCR efficiency would comply with the limits required by future Euro 5/6 regulations. Associated urea solution consumptions were estimated thanks to a simplified model. Finally, a comparison with a Diesel application was also made. It showed that the required amount of reducing agent remained significantly higher for SI lean-burn engines than for Diesel engine.
Technical Paper

SCIP : a New Simplified Camless IAPAC Direct Injection for Low Emission Small Two-Stroke Engines

1997-10-27
978455
The IAPAC Direct fuel Injection (DI) system, developed by IFP, has already well proven its capability to reduce pollutants emissions and fuel consumption of 2-stroke engine. This crankcase Compressed Air Assisted Fuel Injection Process allowing the introduction of the fuel separately from the scavenging air, minimizes the fuel short-circuiting. In earlier works, results of the implementation of the IAPAC system on cylinder displacement from 125 cc to 400 cc have been presented in various papers. These first prototypes were all using a camshaft to drive the IAPAC DI poppet valve, which was considered as a limitation for applying this system to small displacement 2-stroke engines. The new SCIP system is no more using a camshaft. The IAPAC poppet valve used for low pressure air assisted fuel atomization and in-cylinder injection, is here actuated by a diaphragm and the lift of the valve is controlled by pressures from the engine.
Technical Paper

Response of Diesel Combustion Systems to Increase of Fuel Injection Rate

1979-02-01
790037
Experimental data are presented to show how diesel combustion systems respond to increase of fuel injection rate. Concepts of a fuel spray entrainment parameter, a maximum useful injection rate, and a condition termed ‘impingement’ are introduced to correlate and interpret widely differing responses. Best possible smoke and BSFC values in swirl type direct injection engines are obtained for injection rates 15% to 33% higher than normal values, but in practice lower rates must be used to satisfy emissions and other requirements. Engines with a high swirl rate and impingement give a superior ‘retardability’ for normal injection rates. Computer model calculations also show that there is a maximum useful injection rate and explain the relative fuel economies for different diesel combustion systems.
Journal Article

Potential of Several Alternative Propulsion Systems for Light Rotorcrafts Applications

2013-09-17
2013-01-2230
Reducing greenhouse gas emissions to limit global warming is becoming one of the key issues of the 21st century. As a growing contributor to this phenomenon, the aeronautic transport sector has recently taken drastic measures to limit its impact on CO2 and pollutants, like the aviation industry entry in the European carbon market or the ACARE objectives. However the defined targets require major improvements in existing propulsion systems, especially on the gas generator itself. Regarding small power engines for business aviation, rotorcrafts or APU, the turboshaft is today a dominant technology, despite quite high specific fuel consumption. In this context, solutions based on Diesel Internal Combustion Engines (ICE), well known for their low specific fuel consumption, could be a relevant alternative way to meet the requirements of future legislations for low and medium power applications (under 1000kW).
Technical Paper

Origins of Hydrocarbon and Carbon Monoxide Emissions From Diesel Engines

1978-01-01
785061
The paper considers the combustion regimes which lead to the emission of HC and CO in diesel combustion systems. Experimental data are presented to show the effect of a wide range of operating variables on the emission of HC and CO from a range of production automotive diesel engines. Analysis of the data shows that three localised sources account for most of the HC and CO emissions. The measures required to exploit the very low emissions potential of the diesel engine are discussed.
Technical Paper

Origins of Hydrocarbon Emissions from Diesel Engines

1977-02-01
770259
Experimental data on the concentration of hydrocarbons (HC) emitted in the exhaust are presented for both direct injection (DI) and indirect injection (IDI) engines and cover the effect of a wide range of engine operating parameters. The analysis shows that there are two main sources of HC in DI engines. One is due to the volume of fuel in the sac and holes of the injection nozzle and the other is from fuel premixed to leaner than lean limit conditions. Reduction of sac volume and reduction of ignition delay are effective in reducing the HC from the sac volume and lean limit sources respectively. Developments in fuel injection equipment and engine design to reduce HC emissions are outlined.
Technical Paper

Origins of Diesel Particulate Mass Emission

1981-02-01
810260
Emissions results are presented from an experimental study of an indirect injection diesel engine. The mass measurements of particulate emission are correlated with the measurements of smoke and HC emission. The correlation provides a less expensive way of carrying out preliminary combustion optimisation work. It is concluded that practically all of the particulate mass emission is accounted for by: (a) the black smoke or soot formed in the high temperature fuel-rich regions of the diffusion phase of burning, (b) that fraction (about 50%) of the total HC mass emission which condenses at the particulate sampling filter. The total HC mass emission is itself a function of three distinct sources in the combustion process. The understanding gained is then used to define three combustion ideals for optimising diesel combustion to minimise fuel consumption and emissions of smoke, NOX, particulates, HC, CO, odor and noise.
Technical Paper

More Torque, Less Emissions and Less Noise

2000-03-06
2000-01-0942
For many years, compression ignition combustion has been studied by a combination of generic studies on fuel spray formation and analysis of results from single and multicylinder engines. The results and insight have been applied to design and develop advanced fuel injection equipment for high-speed direct injection engines. Experimental fuel injection equipments, including early common rail designs, have been matched to combustion chambers in single cylinder research engines to tackle the conflicting requirements of efficiency and minimum nitric oxide formation, combustion noise and soot. A clear strategy evolved from the work with experimental equipment that is being applied to multicylinder engines. If sufficient oxygen is available in the gas charge trapped in each cylinder, the LDCR common rail injection system will provide the fuel required to develop high torque at low engine speeds.
Technical Paper

Measurement of Diesel Exhaust Odorants and Effect of Engine Variables

1980-02-01
800424
An analytical technique has been optimised for the measurement of the concentrations of diesel exhaust odorants. Application of this technique to combustion bomb studies shows that preflame reactions with diesel fuel produce high concentrations of odorants. The effects of engine variables on exhaust odorant concentrations are presented for direct and indirect injection engines. Analysis of these data shows that diesel exhaust odorants are produced from three sources: (a) the fuel-lean mixture produced during the ignition delay period, (b) fuel emptying from the nozzle sac volume of direct injection engines after injection, (c) a fuel-rich source which becomes significant at high load. The practical measures for control of odorants are outlined.
Technical Paper

Innovative Ultra-low NOx Controlled Auto-Ignition Combustion Process for Gasoline Engines: the 4-SPACE Project

2000-06-19
2000-01-1837
The purpose of the 4-SPACE (4-Stroke Powered gasoline Auto-ignition Controlled combustion Engine) industrial research project is to research and develop an innovative controlled auto-ignition combustion process for lean burn automotive gasoline 4-stroke engines application. The engine concepts to be developed could have the potential to replace the existing stoichiometric / 3-way catalyst automotive spark ignition 4-stroke engines by offering the potential to meet the most stringent EURO 4 emissions limits in the year 2005 without requiring DeNOx catalyst technology. A reduction of fuel consumption and therefore of corresponding CO2 emissions of 15 to 20% in average urban conditions of use, is expected for the « 4-SPACE » lean burn 4-stroke engine with additional reduction of CO emissions.
Technical Paper

Improving NOx Versus BSFC with EUI 200 Using EGR and Pilot Injection for Heavy-Duty Diesel Engines

1996-02-01
960843
An experimental study has been carried out on a single-cylinder pressure-charged engine with a near quiescent combustion system. An improvement in the NOx/BSFC trade-off was achieved by two different approaches, namely exhaust gas recirculation and pilot injection. Without EGR, a reference EUI-200 system with 1900 bar peak injection pressure gave a low soot particulate level of 0.013 g/bhp h over a simulation of the US FTP cycle. The results with EGR show how higher levels of EGR can be used at more advanced injection timings to give substantially improved NOx versus BSFC results compared with timing retard alone. It was possible to reduce the NOx from 4.85 to 3.6 g/bhp h for no increase in BSFC over the simulated US FTP cycle and with a total calculated particulate of 0.075 g/bhph. The results with electronically-controlled pilot injection show improvements in NOx versus BSFC, lower NOx before HC increase with retard, or reduced combustion noise at certain test modes.
Technical Paper

Improvements of the KIVA Dense Spray Modeling for HSDI Diesel Engines

2007-01-23
2007-01-0001
A numerical study has been performed to investigate the soot emission from a high-speed single-cylinder direct injection diesel engine. It was shown that the current KIVA CFD code with the standard evaporation model could predict the experimental trend, where at a low speed running condition a higher smoke reading is reached when increasing the injector protrusion into the piston chamber and conversely a lower smoke reading was recorded for the same change in injector protrusion at a high running speed condition. Evidence of inappropriate air/fuel mixing was seen via rates of heat release analyses, especially in the high-speed conditions. Efforts to reduce this discrepancy by way of improvements to the KIVA breakup and evaporation models were made. Results of the modified models showed improvements in the vapor dispersion of the atomizing liquid jet, thus affecting the mixing rates and predicted smoke emissions.
Technical Paper

Fuel Property Effects on Fuel/Air Mixing in an Experimental Diesel Engine

1986-02-01
860223
Fuels of widely varying properties are studied by injection of a single and well defined spray into an experimental diesel engine. Three optical techniques were developed to visualise liquid fuel, fuel vapour, flame, soot and individual droplets and their associated vapour trails. Liquid core length measurements are presented for diesel fuel, toluene, ethanol and sunflower oil. Computer model predictions show that an increase of the fuel mid-boiling point by 40°C gives a similar effect on liquid core length to an increase of 0.03mm in the nozzle hole diameter.
Technical Paper

Factors Affecting Smoke and Gaseous Emissions from Direct Injection Engines and a Method of Calculation

1973-02-01
730169
This paper consists of two parts. Part I concerns the effects of injection timing, injection rate, and air swirl on emission of smoke and gaseous pollutants from direct-injection diesel engines. Studies show that fuel-injection equipment and variables such as nozzle configuration affect pollutant production and emission because they affect fuel-air mixing. An increased rate of injection or air swirl increases the rate of fuel-air mixing and reduces the amount of exhaust smoke and its dependence on injection timing. An increase in rate or swirl ratio increases nitric oxide emission at a given injection timing, but the increase is relatively small compared with reduction obtained by retarding injection timing. Substantial retard, in conjunction with increased rate of fuel-air mixing, limits loss in engine efficiency. Part II reports development of a model for calculating soot and nitric oxide formation.
Technical Paper

Effects of Ethanol on Performance and Exhaust Emissions from a DI Spark Ignition Engine with Throttled and Unthrottled Operations

2014-04-01
2014-01-1393
In recent years, in order to develop more efficient and cleaner gasoline engines, a number of new engine operating strategies have been proposed and many have been studied on different engines but there is a lack of comparison between various operating strategies and alternative fuels at different SI modes. In this research, a single cylinder direct injection gasoline engine equipped with an electro-hydraulic valve train system has been commissioned and used to study and compare different engine operation modes. In this work, the fuel consumption, gaseous and particulate emissions of gasoline and its mixture with ethanol (E15 and E85) were measured and analysed when the engine was operated at the same load but with different load control methods by an intake throttle, reduced intake valve duration, and positive overlap.
Technical Paper

Effects of Ethanol on Part-Load Performance and Emissions Analysis of SI Combustion with EIVC and Throttled Operation and CAI Combustion

2014-04-01
2014-01-1611
Internal combustion engines are subjected to part-load operation more than in full load during a typical vehicle driving cycle. The problem with the Spark Ignition (SI) engine is its inherent low part-load efficiency. This problem arises due to the pumping loses that occur when the throttle closes or partially opens. One way of decreasing the pumping losses is to operate the engine lean or by adding residual gases. It is not possible to operate the engine unthrottled at very low loads due to misfire. However, the load can also be controlled by changing the intake valve closing timing - either early or late intake valve closing. Both strategies reduce the pumping loses and hence increase the efficiency. However the early intake valve closure (EIVC) can be used as mode transition from SI to CAI combustion.
Technical Paper

Development of a Two-Stroke/Four-Stroke Switching Gasoline Engine - The 2/4SIGHT Concept

2005-04-11
2005-01-1137
The pursuit of flexibility is a recurring theme in engine design and development. Engines that are able to switch between the two-stroke operating cycle and four-stroke operation promise a great leap in flexibility. Such 2S-4S engines could then continuously select the optimum operating mode - including HCCI/CAI combustion - for fuel efficiency, emissions or specific output. With recent developments in valvetrain technology, advanced boosting devices, direct fuel injection and engine control, the 2S-4S engine is an increasingly real prospect. The authors have undertaken a comprehensive feasibility study for 2S-4S gasoline engines. This study has encompassed concept and detailed design, design analysis, one-dimensional gas dynamics simulation, three-dimensional computational fluid dynamics, and vehicle simulation. The resulting 2/4SIGHT concept engine is a 1.04 l in-line three-cylinder engine producing 230 Nm and 85 kW.
Technical Paper

Application of IAPAC Fuel Injection for Low Emissions Small Two-Stroke Engines

1995-09-01
951785
The implementation of the IFP developed Compressed Air Assisted Fuel Injection Process (named IAPAC) in a two-stroke engine allows the introduction of the fuel separately from the scavenging air, which in consequence minimizes fuel short-circuiting. The inherent mechanical principle of the IAPAC process which uses the crankcase compressed air to finely atomize the fuel, provides the advantages of direct injection but in addition uses conventional low pressure automotive type injection technology with commercially available gasoline injectors. In earlier work we showed an example of the application of this fuel injection technology to a PIAGGIO single cylinder 125 cc scooter two-stroke engine. In this paper, an update of the results obtained with this new engine is presented and confirms the ultra-low emissions capability for two-wheeler application.
X