Refine Your Search

Topic

Search Results

Technical Paper

Using Oxygenated Gasoline Surrogate Compositions to Map RON and MON

2014-04-01
2014-01-1303
Gasoline fuels are complex mixtures which consist of more than 200 different hydrocarbon species. In order to decrease the chemical and physical complexity, oxygenated surrogate components were used to enhance the fundamental understanding of partially premixed combustion (PPC). The ignition quality of a fuel is measured by octane number. There are two methods to measure the octane number: research octane number (RON) and motor octane number (MON). In this paper, RON and MON were measured for a matrix of n-heptane, isooctane, toluene, and ethanol (TERF) blends spanning a wide range of octane number between 60.6 and 97. First, regression models were created to derive RON and MON for TERF blends. The models were validated using the standard octane test for 17 TERF blends. Second, three different TERF blends with an ignition delay (ID) of 8 degrees for a specific operating condition were determined using a regression model.
Technical Paper

The Physical and Chemical Effects of Fuel on Gasoline Compression Ignition

2019-04-02
2019-01-1150
In the engine community, gasoline compression ignition (GCI) engines are at the forefront of research and efforts are being taken to commercialize an optimized GCI engine in the near future. GCI engines are operated typically at Partially Premixed Combustion (PPC) mode as it offers better control of combustion with improved combustion stability. While the transition in combustion homogeneity from convectional Compression Ignition (CI) to Homogenized Charge Compression Ignition (HCCI) combustion via PPC has been comprehensively investigated, the physical and chemical effects of fuel on GCI are rarely reported at different combustion modes. Therefore, in this study, the effect of physical and chemical properties of fuels on GCI is investigated. In-order to investigate the reported problem, low octane gasoline fuels with same RON = 70 but different physical properties and sensitivity (S) are chosen.
Technical Paper

The Effect of Transfer Port Geometry on Scavenge Flow Velocities at High Engine Speed

1996-02-01
960366
2-D LDV measurements were performed on two different cylinder designs in a fired two-stroke engine running with wide-open throttle at 9000 rpm. The cylinders examined were one with open transfer channels and one with cup handle transfer channels. Optical access to the cylinder was achieved by removing the silencer and thereby gain optical access through the exhaust port. No addition of seeding was made, since the fuel droplets were not entirely vaporized as they entered the cylinder and thus served as seeding. Results show that the loop-scavenging effect was poor with open transfer channels, but clearly detectable with cup handle channels. The RMS-value, “turbulence”, was low close to the transfer ports in both cylinders, but increased rapidly in the middle of the cylinder. The seeding density was used to obtain information about the fuel concentration in the cylinder during scavenging.
Technical Paper

The Effect of Piston Topland Geometry on Emissions of Unburned Hydrocarbons from a Homogeneous Charge Compression Ignition (HCCI) Engine

2001-05-07
2001-01-1893
The effect of crevice volumes on the emissions of unburned hydrocarbons from a Homogeneous Charge Compression Ignition (HCCI) engine has been experimentally investigated. By varying the size and the geometry of the largest crevice, the piston topland, it was possible to ascertain whether or not crevices are the largest source of HC. Additionally, information on quenching distances for ultra lean mixtures was obtained. The tests were performed on a single cylinder engine fuelled with iso-octane. The results showed that most of the unburned hydrocarbons descend from the crevices. Increasing the topland width to some degree lead to an increase in HC. A further increase in topland width (>1.3 mm) resulted in a reduction of HC when using mixtures richer than λ ≈ 2.8, indicating that some of the mixture trapped in the topland participates in the combustion. In conditions when combustion occurred in the topland, the HC was rather insensitive to the height of the topland.
Technical Paper

The Application of Ceramic and Catalytic Coatings to Reduce the Unburned Hydrocarbon Emissions from a Homogeneous Charge Compression Ignition Engine

2000-06-19
2000-01-1833
An experimental and theoretical study of the effect of thermal barriers and catalytic coatings in a Homogeneous Charge Compression Ignition (HCCI) engine has been conducted. The main intent of the study was to investigate if a thermal barrier or catalytic coating of the wall would support the oxidation of the near-wall unburned hydrocarbons. In addition, the effect of these coatings on thermal efficiency due to changed heat transfer characteristics was investigated. The experimental setup was based on a partially coated combustion chamber. The upper part of the cylinder liner, the piston top including the top land, the valves and the cylinder head were all coated. As a thermal barrier, a coating based on plasma-sprayed Al2O3 was used. The catalytic coating was based on plasma-sprayed ZrO2 doped with Platinum. The two coatings tested were of varying thickness' of 0.15, 0.25 and 0.6 mm. The compression ratio was set to 16.75:1.
Technical Paper

Simultaneous PLIF Measurements for Visualization of Formaldehyde- and Fuel- Distributions in a DI HCCI Engine

2005-10-24
2005-01-3869
Simultaneous laser induced fluorescence (LIF) imaging of formaldehyde and a fuel-tracer have been performed in a direct-injection HCCI engine. A mix of N-heptane and iso-octane was used as fuel and Toluene as fluorescent tracer. The experimental setup involves two pulsed Nd:YAG lasers and two ICCD cameras. Frequency quadrupled laser radiation at 266 nm from one of the Nd:YAG lasers was used for excitation of the fuel tracer. The resulting fluorescence was detected with one of the ICCD cameras in the spectral region 270-320 nm. The second laser system provided frequency tripled radiation at 355 nm for excitation of Formaldehyde. Detection in the range 395-500 nm was achieved with the second ICCD. The aim of the presented work is to investigate the applicability of utilizing formaldehyde as a naturally occurring fuel marker. Formaldehyde is formed in the low temperature reactions (LTR) prior to the main combustion and should thus be present were fuel is located until it is consumed.
Technical Paper

Simulation of HCCI – Addressing Compression Ratio and Turbo Charging

2002-10-21
2002-01-2862
This paper focuses on the performance and efficiency of an HCCI (Homogenous Charge Compression Ignition) engine system running on natural gas or landfill gas for stationary applications. Zero dimensional modeling and simulation of the engine, turbo, inlet and exhaust manifolds and inlet air conditioner (intercooler/heater) are used to study the effect of compression ratio and exhaust turbine size on maximum mean effective pressure and efficiency. The extended Zeldovich mechanism is used to estimate NO-formation in order to determine operation limits. Detailed chemical kinetics is used to predict ignition timing. Simulation of the in-cylinder process gives a minimum λ-value of 2.4 for natural gas, regardless of compression ratio. This is restricted by the NO formation for richer mixtures. Lower compression ratios allow higher inlet pressure and hence higher load, but it also reduces indicated efficiency.
Technical Paper

Scavenging Flow Velocity in Small Two-Strokes at High Engine Speed

1995-09-01
951789
2D-LDV-measurements were made on the flow from one transfer channel into the cylinder in a small two-stroke SI engine. The LDV measuring volume was located just outside the transfer port. The engine was a carburetted piston-ported crankcase compression chainsaw engine and it was run with wide open throttle at 9000 RPM. The muffler was removed to enable access into the cylinder. No additional seeding was used; the fuel and/or oil was not entirely vaporized as it entered the cylinder. Very high velocities (-275 m/s) were detected in the beginning of the scavenging phase. The horizontal velocity was, during the whole scavenging phase, higher than the vertical.
Technical Paper

Reed Valve Evaluation and Selection for the Compressor Cylinder in Double Compression Expansion Engine (DCEE) Concept

2021-04-06
2021-01-0397
This paper shows the potential benefits of implementing four configurations of reed valves at the inlet of the two-stroke compressor used in the double compression expansion engine (DCEE) concept or 8-stroke engines over the conventional poppet valves used in 4-stroke internal combustion engines. To model the reed and poppet valve configurations, the discharge coefficient was estimated from RANS computational fluid dynamics simulations using ANSYS Fluent 2020 R1, with a pressure difference up to 0.099 bar. The calculated discharge coefficients for each case were then fed in a zero-one dimension model using GT-Power to understand the valve performance i.e. the volumetric efficiency of the compressor cylinder and the mean indicated pressure during the compression process at 1200 rpm.
Technical Paper

Piston-Liner Crevice Geometry Effect on HCCI Combustion by Multi-Zone Analysis

2002-10-21
2002-01-2869
A multi-zone model has been developed that accurately predicts HCCI combustion and emissions. The multi-zone methodology is based on the observation that turbulence does not play a direct role on HCCI combustion. Instead, chemical kinetics dominates the process, with hotter zones reacting first, and then colder zones reacting in rapid succession. Here, the multi-zone model has been applied to analyze the effect of piston crevice geometry on HCCI combustion and emissions. Three different pistons of varying crevice size were analyzed. Crevice sizes were 0.26, 1.3 and 2.1 mm, while a constant compression ratio was maintained (17:1). The results show that the multi-zone model can predict pressure traces and heat release rates with good accuracy. Combustion efficiency is also predicted with good accuracy for all cases, with a maximum difference of 5% between experimental and numerical results.
Technical Paper

Particle Image Velocimetry Flow Measurements and Heat-Release Analysis in a Cross-Flow Cylinder Head

2002-10-21
2002-01-2840
A specially designed cylinder head, enabling unthrottled operation with a standard cam-phasing mechanism, was tested in an optical single-cylinder engine. The in-cylinder flow was measured with particle image velocimetry (PIV) and the results were compared with heat release and emission measurements. The article also discusses effects of residual gas and effective compression ratio on heat-release and emissions. The special design of the cylinder head, with one inlet and one exhaust valve per camshaft, made it possible to operate the engine unthrottled at part load. Cam phasing led to late inlet valve closing, but also to increased valve overlap. The exhaust valve closing was late in the intake stroke, resulting in high amounts of residual gases. Two different camshafts were used with late inlet valve closing. One of the camshafts had shorter valve open duration on the phased exhaust cam lobe.
Technical Paper

Oxy-Fuel HCCI Combustion in a CFR Engine with Carbon Dioxide as a Thermal Buffer

2019-09-09
2019-24-0119
Global warming and the increasingly stringent emission regulations call for alternative combustion techniques to reduce CO2 emissions. Oxy-fuel combustion is one of those techniques since the combustion products are easily separated by condensing the water and storing CO2. A problem associated with the burning of fuel using pure oxygen as an oxidant is that it results in high adiabatic flame temperature. This high flame temperature is decreased by introducing a thermal buffer to the system. A thermal buffer in this context is any gas that does not participate in combustion but at the same time absorbs some of the released heat and thus decreases the temperature of the medium. Many experiments have been conducted to study oxy-fuel combustion in ICE using noble gases as thermal buffers. However, those experiments focused on using hydrogen as a fuel to avoid any build-up of CO2 in the system.
Technical Paper

Low Load Limit Extension for Gasoline Compression Ignition Using Negative Valve Overlap Strategy

2018-04-03
2018-01-0896
Gasoline compression ignition (GCI) is widely studied for the benefits of simultaneous reduction in nitrogen oxide (NOX) and soot emissions without compromising the engine efficiency. Despite this advantage, the operational range for GCI is not widely expanded, as the auto-ignition of fuel at low load condition is difficult. The present study aims to extend the low load operational limit for GCI using negative valve overlap (NVO) strategy. The engine used for the current experimentation is a single cylinder diesel engine that runs at an idle speed of 800 rpm with a compression ratio of 17.3. The engine is operated at homogeneous charge compression ignition (HCCI) and partially premixed combustion (PPC) combustion modes with the corresponding start of injection (SOI) at −180 CAD (aTDC) and −30 CAD (aTDC), respectively.
Technical Paper

Load Control Using Late Intake Valve Closing in a Cross Flow Cylinder Head

2001-09-24
2001-01-3554
A newly developed cross flow cylinder head has been used for comparison between throttled and unthrottled operation using late intake valve closing. Pressure measurements have been used for calculations of indicated load and heat-release. Emission measurements has also been made. A model was used for estimating the amount of residual gases resulting from the different load strategies. Unthrottled operation using late intake valve closing resulted in lower pumping losses, but also in increased amounts of residual gases, using this cylinder head. This is due to the special design, with one intake valve and one exhaust valve per camshaft. Late intake valve closing was achieved by phasing one of the camshafts, resulting in late exhaust valve closing as well. With very late phasing - i.e. low load - the effective compression ratio was reduced. This, in combination with high amount of residual gases, resulted in a very unstable combustion.
Technical Paper

Laser Sheet Droplet Concentration Measurements in a High Speed Two-Stroke Engine

1997-10-27
978494
Laser sheet droplet illumination was used to visualize the concentration of fuel droplets over the piston top area. Four different cylinder designs were examined: Open transfer channels and three types of cup handle transfer channels. Optical access to the scavenging area of the engine was achieved by removing the silencer and use a window in the top of the engine. The engines were run at their rated speeds: 9000 rpm for three of the engines and 5800 rpm for one of them. Images of the concentration patterns were captured at various crank positions, −20, −10, 0, 10, 20, 30 Crank Angle Degrees (CAD) from Bottom Dead Center (BDC). Results show that the concentration of fuel droplets is higher close to the back wall of the cylinder with cup handle transfer channels. Late in the scavenging phase, the concentration pattern is more spread over the entire cylinder area, for all types of transfer channels.
Technical Paper

Investigation of Partially Premixed Combustion Characteristics in Low Load Range with Regards to Fuel Octane Number in a Light-Duty Diesel Engine

2012-04-16
2012-01-0684
The impact of ignition quality and chemical properties on engine performance and emissions during low load partially premixed combustion (PPC) in a light-duty diesel engine were investigated. Four fuels in the gasoline boiling range, together with Swedish diesel (MK1), were operated at loads between 2 and 8 bar IMEPg at 1500 rpm, with 50% heat released located at 6 crank angle degrees (CAD) after top dead center (TDC). A single injection strategy was used, wherein the start of injection (SOI) and the injection duration were adjusted to achieve desired loads with maintained CA50, as the injection pressure was kept constant at 1000 bar. The objective of this work was to examine the low-load limit for PPC at approximately 50% EGR and λ=1.5, since these levels had been suggested as optimal in earlier studies. The low-load limits with stable combustion were between 5 and 7 bar gross IMEP for the gasoline fuels, higher limit for higher RON values.
Technical Paper

Influence of Inlet Temperature and Hot Residual Gases on the Performances of a Mini High Speed Glow Plug Engine

2006-11-13
2006-32-0057
Nowadays the power supplying systems have a fundamental importance for all small and portable devices. For low power applications, there are two main ways for producing power: electrochemical batteries and mini engines. Even though in recent years many developments have been carried out in improving the design of batteries, the energy density of 1MJ/kg seems to be an asymptotic value. If the energy source is a hydrocarbon fuel, whose energy density is 46 MJ/kg, with an overall efficiency of only 2.5 % it is possible to surpass the electrochemical batteries. On the other hand, having a mini engine, as energy source, implies three main problems: vibrations, noise and emissions. A light (230 g) model airplane engine with a displacement volume of 4.11 cm3 and a geometrical compression ratio of 13.91 has been studied. The work carried out in this paper can be divided basically in three parts.
Technical Paper

Influence of Injection Timing on Exhaust Particulate Matter Emissions of Gasoline in HCCI and PPC

2016-10-17
2016-01-2300
In order to reduce nitrogen oxides (NOx) and soot emissions while maintaining high thermal efficiency, more advanced combustion concepts have been developed over the years, such as Homogeneous Charge Compression Ignition (HCCI) and Partially Premixed Combustion (PPC), as possible combustion processes in commercial engines. Compared to HCCI, PPC has advantages of lower unburned hydrocarbon (UHC) and carbon monoxide (CO) emissions; however, due to increased fuel stratifications, soot emissions can be a challenge when adding Exhaust-Gas Recirculation (EGR) gas. The current work presents particle size distribution measurements performed from HCCI-like combustion with very early (120 CAD BTDC) to PPC combustion with late injection timing (11 CAD BTDC) at two intake oxygen rates, 21% and 15% respectively. Particle size distributions were measured using a differential mobility spectrometer DMS500.
Technical Paper

Hydrocarbon (HC) Reduction of Exhaust Gases from a Homogeneous Charge Compression Ignition (HCCI) Engine Using Different Catalytic Mesh-Coatings

2000-06-19
2000-01-1847
A FeCrAlloy mesh-type catalyst has been used to reduce hydrocarbons (HC) and carbon monoxide (CO) emissions from a 4-stroke HCCI engine. Significant for the HCCI engine is a high compression ratio and lean mixtures, which leads to a high efficiency, low combustion temperatures and thereby low NOx emissions, <5 pmm, but also low exhaust temperatures, around 300°C. It becomes critical to: 1. Ensure that the HCCI-combustion generates as low HC emissions as possible, this can be done by very precise control of engine inlet conditions and, if possible, compression ratio. 2. Ensure that the exhaust temperature is high enough, without loosing efficiency or producing NOx; in order to get an oxidizing catalyst to work. 3. Select proper catalyst material for the catalyst so that the exhaust temperature can be as low as possible.
Technical Paper

HCCI Heat Release Data for Combustion Simulation, Based on Results from a Turbocharged Multi Cylinder Engine

2010-05-05
2010-01-1490
When simulating homogenous charge compression ignition or HCCI using one-dimensional models it is important to have the right combustion parameters. When operating in HCCI the heat release parameters will have a high influence on the simulation result due to the rapid combustion rate, especially if the engine is turbocharged. In this paper an extensive testing data base is used for showing the combustion data from a turbocharged engine operating in HCCI mode. The experimental data cover a wide range, which span from 1000 rpm to 3000 rpm and engine loads between 100 kPa up to over 600 kPa indicated mean effective pressure in this engine speed range. The combustion data presented are: used combustion timing, combustion duration and heat release rate. The combustion timing follows the load and a trend line is presented that is used for engine simulation. The combustion duration in time is fairly constant at different load and engine speeds for the chosen combustion timings here.
X