Refine Your Search

Topic

Search Results

Technical Paper

Use of Variable Valve Actuation to Control the Load in a Direct Injection, Turbocharged, Spark-Ignition Engine

2010-10-25
2010-01-2225
Downsizing and Turbo Charging (TC) and Direct Injection (DI) may be combined with Variable Valve Actuation (VVA) to better deal with the challenges of fuel economy enhancement. VVA may control the load without throttle; control the valve directly and quickly; optimize combustion, produce large volumetric efficiency. Benefits lower fuel consumption, lower emissions and better performance and fun to drive. The paper presents an engine model of a 1.6 litre TDI VVA engine specifically designed to run pure ethanol, with computed engine maps for brake specific fuel consumption and efficiency. The paper also presents driving cycle results obtained with a vehicle model for a passenger car powered by this engine and a traditional naturally aspirated gasoline engine. Preliminary results of the VVA system coupled with downsizing, turbo charging and Direct Injection permits significant driving cycle fuel economies.
Technical Paper

Two Stroke Direct Injection Jet Ignition Engines for Unmanned Aerial Vehicles

2015-09-15
2015-01-2424
Unmanned Aerial Vehicles (UAV) require simple and reliable engines of high power to weight ratio. Wankel and two stroke engines offer many advantages over four stroke engines. A two stroke engines featuring crank case scavenging, precise oiling, direct injection and jet ignition is analyzed here by using CAD, CFD and CAE tools. Results of simulations of engine performances are shown in details. The CFD analysis is used to study fuel injection, mixing and combustion. The CAE model then returns the engine performances over the full range of loads and speeds with the combustion parameters given as an input. The use of asymmetric rather than symmetric port timing and supercharging scavenging is finally suggested as the best avenue to further improve power density and fuel conversion efficiency.
Technical Paper

Super-Turbocharging the Gasoline Engine

2018-07-09
2018-28-0007
In this paper, the concept of super-turbocharging is applied, in simulation, to a four-cylinder direct injection jet ignition gasoline engine. Turbocharging improves the power density of internal combustion engines, both the compression ignition and the spark ignition. However, a standalone turbocharger suffers from transient and steady state performance and efficiency degradation where the energy to turbine is either smaller or larger than what would be needed to optimize the engine operation in a specific point. Hence a concept is proposed to use a super-turbocharger, where the turbocharger shaft is connected to the crankshaft through a continuously variable transmission (CVT) and a gears pair. Energy is drawn from the crankshaft or delivered to the crankshaft to better work in every operating point. The concept was originally proposed for a diesel engine. Here it is applied to a gasoline engine.
Technical Paper

Series BEV with a Small Battery Pack and High-Efficiency ICE Onboard Electricity Production: B-Class, High-Roof Hatchback and Le Mans Hypercar Applications

2020-09-15
2020-01-2250
Data of battery electric vehicles (BEV) with and without a range extender internal combustion engines (ICE) are reviewed and integrated with weight and performance models. A BEV with an on-board, high efficiency, electricity generator based on positive ignition (PI) ICEs is proposed to improve the uptake of the BEV targeting city commuters while improving their economic and environmental impacts. The small ICE, that is working stationary, fixed load and speed, and the generator similarly optimized for a single point operation, permit an efficiency fuel chemical-to-electric of about 49%. This is much better than producing electricity centralized from combustion fuels (average efficiency with included distribution and recharging losses), and it does not require any electric recharging infrastructure. The range of cars can be extended to about the same values of today's car with traditional combustion engines.
Technical Paper

Reduced Warm-Up and Recovery of the Exhaust and Coolant Heat with a Single Loop Turbo Steamer Integrated with the Engine Architecture in a Hybrid Electric Vehicle

2013-11-27
2013-01-2827
The paper considers a novel waste heat recovery (WHR) system integrated with the engine architecture in a hybrid electric vehicle (HEV) platform. The novel WHR system uses water as the working media and recovers both the internal combustion engine coolant and exhaust energy in a single loop. Results of preliminary simulations show a 6% better fuel economy over the cold start UDDS cycle only considering the better fuel usage with the WHR after the quicker warm-up but neglecting the reduced friction losses for the warmer temperatures over the full cycle.
Book

Prototype Powertrain in Motorsport Endurance Racing

2018-08-01
Racing continues to be the singular, preeminent source of powertrain development for automakers worldwide. Engineering teams rely on motorsports for the latest prototype testing and research. Endurance racing provides the harshest and most illuminating stage for system design validation of any motorsport competition. While advancements throughout the 20th Century brought about dramatic increases in engine power output, the latest developments from endurance racing may be more impactful for fuel efficiency improvements. Hybrid powertrains are a critical area of research for automakers and are being tested on the toughest of scales. Prototype Powertrain in Motorsport Endurance Racing brings together ten vital SAE technical papers and SAE Automotive Engineering magazine articles surrounding the advancements of hybrid powertrains in motorsports.
Technical Paper

Numerical Investigation of Dual Fuel Diesel-CNG Combustion on Engine Performance and Emission

2015-03-10
2015-01-0009
With the purpose of reducing emission level while maintaining the high torque character of diesel engine, various solutions have been proposed by researchers over the world. One of the most attractive methods is to use dual fuel technique with premixed gaseous fuel ignited by a relatively small amount of diesel. In this study, Methane (CH4), which is the main component of natural gas, was premixed with intake air and used as the main fuel, and diesel fuel was used as ignition source to initiate the combustion. By varying the proportion of diesel and CH4, the combustion and emissions characteristics of the dual fuel (diesel/CH4) combustion system were investigated. Different cases of CFD studies with various concentration of CH4 were carried out. A validated 3D quarter chamber model of a single cylinder engine (diesel fuel only) generated by using AVL Fire ESE was modified into dual fuel mode in this study.
Technical Paper

Novel Engine Concepts for Multi Fuel Military Vehicles

2012-02-29
2012-01-1514
The paper considers different options to design a multi fuel engine retaining the power densities and efficiencies of the latest Diesel heavy duty truck engines while operating with various other fuels. In a first option, an igniting Diesel fuel is coupled to a main fuel that may have any Cetane or octane number in a design where every engine cylinder accommodates a direct Diesel injector, a glow plug and the multi fuel direct injector in a bowl-in-piston combustion chamber configuration. Alternatively, an igniting gasoline fuel replaces the Diesel fuel in a design where every engine cylinder accommodates a gasoline direct injector, the multi fuel direct injector and a jet ignition pre chamber also with a bowl-in-piston combustion chamber configuration. Both these designs permit load control by changing the amount of fuel injected and Diesel-like, gasoline-like and mixed Diesel/gasoline-like modes of operation modulating the amount of the multi fuel that burn premixed or diffusion.
Journal Article

Novel Crankshaft Mechanism and Regenerative Braking System to Improve the Fuel Economy of Light Duty Vehicles and Passenger Cars

2012-09-10
2012-01-1755
Improvements of vehicle fuel economy may be achieved by the introduction of advanced internal combustion engines (ICE) improving the fuel conversion efficiency of the engine and of advanced power trains (PWT) reducing the amount of fuel energy needed to power the vehicle. The paper presents a novel design of a variable compression ratio advanced spark ignition engine that also permits an expansion ratio that may differ from the compression ratio hence generating an Atkinson cycle effect. The stroke ratio and the ratio of maximum to minimum in-cylinder volumes may change with load and speed to provide the best fuel conversion efficiency. The variable ratio of maximum to minimum in-cylinder volumes also improves the full load torque output of the engine.
Technical Paper

Modeling of Engine and Vehicle for a Compact Car with a Flywheel Based Kinetic Energy Recovery Systems and a High Efficiency Small Diesel Engine

2010-10-25
2010-01-2184
Recovery of kinetic energy during driving cycles is the most effective option to improve fuel economy and reduce green house gas (GHG) emissions. Flywheel kinetic energy recovery systems (KERS) may boost this efficiency up to values of about 70%. An engine and vehicle model is developed to simulate the fuel economy of a compact car equipped with a TDI diesel engine and a KERS. Introduction of KERS reduces the fuel used by the 1.6L TDI engine to 3.16 liters per 100 km, corresponding to 82.4 g of CO₂ per km. Downsizing the engine to 1.2 liters as permitted by the torque assistance by KERS, further reduces the fuel consumption to 3.04 liters per 100 km, corresponding to 79.2 g of CO₂ per km. These CO₂ values are 11% better than those of today's most fuel efficient hybrid electric vehicle.
Technical Paper

KERS Braking for 2014 F1 Cars

2012-09-17
2012-01-1802
Small, high power density turbocharged engines coupled to kinetic energy recovery systems are one of the key areas of development for both passenger and racing cars. In passenger cars, the KERS may reduce the amount of thermal energy needed to reaccelerate the car following a deceleration recovering part of the braking energy. This translates in a first, significant fuel energy saving. Also considering the KERS torque boost increasing the total torque available to accelerate the car, large engines working at very low brake mean effective pressures and efficiencies over driving cycles may also be replaced by small higher power density engines working at much higher brake mean effective pressures and therefore much higher part load efficiencies. In racing cars, the coupling of small engines to KERS may improve the perception of racing being more environmentally friendly. The KERS is more a performance boost than a fuel saving device, permitting about same lap times with smaller engines.
Technical Paper

Improving the Efficiency of Turbocharged Spark Ignition Engines for Passenger Cars through Waste Heat Recovery

2012-04-16
2012-01-0388
The turbocharged direct injection stoichiometric spark ignition gasoline engine has less than Diesel full load brake engine thermal efficiencies and much larger than Diesel penalties in brake engine thermal efficiencies reducing the load by throttling. This engine has however a much better power density, and therefore may operate at much higher BMEP values over driving cycles reducing the fuel economy penalty of the vehicle. This engine also has the advantage of the very well developed three way catalytic converter after treatment to meet future emission regulations. In these engines the efficiency may be improved recovering the waste heat, but this recovery may have ultimately impacts on both the in cylinder fuel conversion efficiency and the efficiency of the after treatment.
Journal Article

Improving the Efficiency of LPG Compression Ignition Engines for Passenger Cars through Waste Heat Recovery

2011-12-15
2011-01-2411
The turbocharged direct injection lean burn Diesel engine is the most efficient now in production for transport applications with full load brake efficiencies up to 40 to 45% and reduced penalties in brake efficiencies reducing the load by the quantity of fuel injected. The secrets of this engine's performances are the high compression ratio and the lean bulk combustion mostly diffusion controlled in addition to the partial recovery of the exhaust energy to boost the charging efficiency. The major downfalls of this engine are the carbon dioxide emissions and the depletion of fossil fuels using fossil diesel, the energy security issues of using foreign fossil fuels in general, and finally the difficulty to meet future emission standards for soot, smoke, nitrogen oxides, carbon oxide and unburned hydrocarbons for the combustion of the fuel injected in liquid state and the lack of maturity the lean after treatment system.
Technical Paper

Hydro-Pneumatic Driveline for Passenger Car Applications

2014-09-28
2014-01-2536
Real driving cycles are characterized by a sequence of accelerations, cruises, decelerations and engine idling. Recovering the braking energy is the most effective way to reduce the propulsive energy supply by the thermal engine. The fuel energy saving may be much larger than the propulsive energy saving because the ICE energy supply may be cut where the engine operates less efficiently and because the ICE can be made smaller. The present paper discusses the state of the art of hydro-pneumatic drivelines now becoming popular also for passenger cars and light duty vehicle applications permitting series and parallel hybrid operation. The papers presents the thermal engine operation when a passenger car fitted with the hydro-pneumatic hybrid driveline covers the hot new European driving cycle. From a reference fuel consumption of 4.71 liters/100 km with a traditional driveline, the fuel consumption reduces to 2.91 liters/100 km.
Technical Paper

Exploring the Advantages of Variable Compression Ratio in Internal Combustion Engines by Using Engine Performance Simulations

2011-04-12
2011-01-0364
Variable compression ratio is the technology to adjust internal combustion engine cylinder compression ratio to increase fuel efficiency while under varying loads. The paper presents a new design of a variable compression ratio engine that allows for the volume above the piston at Top Dead Centre (TDC) to be changed. A modeling study is then performed using the WAVE engine performance simulation code for a naturally aspirated gasoline V8 engine. The modeling study shows significant improvements of fuel economy over the full range of loads and especially during light loads operation as well as an improvement of top power and torque outputs.
Technical Paper

Exploring the Advantages of Atkinson Effects in Variable Compression Ratio Turbo GDI Engines

2011-04-12
2011-01-0367
The Atkinson cycle engine is basically an engine permitting the strokes to be different lengths for improved light loads fuel economies. Variable compression ratio is the technology to adjust internal combustion engine cylinder compression ratio to increase fuel efficiency while under varying loads. The paper presents a new design of a variable compression ratio engine that also permits an expansion ratio that may differ from the compression ratio therefore generating an Atkinson cycle effect. The stroke ratio and the ratio of maximum to minimum in-cylinder volumes may change with load and speed to provide the best fuel conversion efficiency. The variable ratio of maximum to minimum in-cylinder volumes also improves the full load power output of the engine.
Technical Paper

Design of Rankine Cycle Systems to Deliver Fuel Economy Benefits over Cold Start Driving Cycles

2012-09-10
2012-01-1713
Prior papers have shown the potentials of gasoline-like internal combustion engines fitted with waste heat recovery systems (WHR) to deliver Diesel-like steady state fuel conversion efficiencies recovering the exhaust and the coolant waste heat with off-the-shelf components. In addition to the pros of the technology significantly increasing steady state efficiencies - up to 5 % in absolute values and much more in relative values - these papers also mentioned the cons of the technology, increased back pressures, increased weight, more complex packaging, more complex control, troublesome transient operation, and finally the cold start issues that prevent the uptake of the technology. This paper further explores the option to use Rankine cycle systems to improve the fuel economy of vehicles under normal driving conditions. A single Rankine cycle system is integrated here with the engine design.
Technical Paper

Coupling of a KERS Power Train and a Downsized 1.2TDI Diesel or a 1.6TDI-JI H2 Engine for Improved Fuel Economies in a Compact Car

2010-10-25
2010-01-2228
Recovery of braking energy during driving cycles is the most effective option to improve fuel economy and reduce green house gas (GHG) emissions. Hybrid electric vehicles suffer the disadvantages of the four efficiency-reducing transformations in each regenerative braking cycle. Flywheel kinetic energy recovery systems (KERS) may boost this efficiency up to almost double values of about 70% avoiding all four of the efficiency-reducing transformations from one form of energy to another and keeping the vehicle's energy in the same form as when the vehicle starts braking when the vehicle is back up to speed. With reference to the baseline configuration with a 1.6 liters engine and no recovery of kinetic energy, introduction of KERS reduces the fuel usage to 3.16 liters per 100 km, corresponding to 82.4 g of CO₂ per km. The 1.6 liters Turbo Direct Injection (TDI) diesel engine without KERS uses 1.37 MJ per km of fuel energy, reducing with KERS to 1.13 MJ per km.
Technical Paper

CO2 Emission Benefits of Homogeneous Charge Compression Ignition and Direct Injection Compression Ignition Combustion

2021-09-22
2021-26-0423
The paper aims to provide an assessment of the Homogeneous Charge Compression Ignition (HCCI) combustion, compared to a well-established alternative such as Direct Injection Compression Ignition (DICI) combustion, under the criteria of CO2 emission reduction potential. The assessment is performed by reviewing the relevant literature and analyzing the commercial products available on the market that are featuring these two technologies. DICI engines have demonstrated in the real world the ability to deliver top fuel conversion efficiencies of about 50%, and fuel conversion efficiencies largely above 40% over most of the load and speed range. Research-only HCCI engines have delivered fuel efficiencies well below 40% in the very few carefully selected map points where they working during carefully performed laboratory experiments.
Technical Paper

CNG Fueling Strategies for Commercial Vehicles Engines-A Literature Review

2013-11-27
2013-01-2812
The paper presents a survey of the opportunities to convert compression ignition heavy duty truck engines to work on single or dual fuel modes with CNG. In one popular option, the compression ignition engine is converted to spark ignition with throttle load control and port injection of the CNG. In another option of increasing popularity, the LNG is directly injected and ignited by direct injection of pilot Diesel. This latter option with direct injection of natural gas and diesel through separate injectors that are fully independent in their operation is determined to be the most promising, as it is expected to deliver better power density and similar part load fuel economy to Diesel.
X