Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Year-Long Evaluation of Trucks and Buses Equipped with Passive Diesel Particulate Filters

2002-03-04
2002-01-0433
A program has been completed to evaluate ultra-low sulfur diesel fuels and passive diesel particulate filters (DPFs) in truck and bus fleets operating in southern California. The fuels, ECD and ECD-1, are produced by ARCO (a BP Company) and have less than 15 ppm sulfur content. Vehicles were retrofitted with two types of catalyzed DPFs, and operated on ultra-low sulfur diesel fuel for over one year. Exhaust emissions, fuel economy and operating cost data were collected for the test vehicles, and compared with baseline control vehicles. Regulated emissions are presented from two rounds of tests. The first round emissions tests were conducted shortly after the vehicles were retrofitted with the DPFs. The second round emissions tests were conducted following approximately one year of operation. Several of the vehicles retrofitted with DPFs accumulated well over 100,000 miles of operation between test rounds.
Technical Paper

Real World Study of Diesel Particulate Filter Ash Accumulation in Heavy-Duty Diesel Trucks

2006-10-16
2006-01-3257
In April 2003, a small field study was initiated to evaluate the effect of lube oil formulations on ash accumulation in heavy-duty diesel DPFs. Nine (9) Fuel Delivery Trucks were retrofitted with passive diesel particulate filters and fueled with ultra low sulfur diesel which contains less than 15 ppm sulfur. Each vehicle operated in the field for 18 months or approximately 160,000 miles (241,401 km) using one of three lube oil formulations. Ash accumulation was determined for each vehicle and compared between the three differing lube oil formulations. Ash analyses, used lube oil analysis and filter substrate evaluations were performed to provide a complete picture of DPF operations. The evaluation also examined some of the key parameters that allows for the successful implementation of the passive DPF in this heavy-duty application.
Technical Paper

Performance and Durability Evaluation of Continuously Regenerating Particulate Filters on Diesel Powered Urban Buses at NY City Transit - Part II

2002-03-04
2002-01-0430
In urban areas, particulate emission from diesel engines is one of the pollutants of most concern. As a result, particulate emission control from urban bus diesel engines using particle filter technology is being evaluated at several locations in the US. A project entitled, “Clean Diesel Vehicle Air Quality Project” has been initiated by NY City Transit under the supervision of NYSDEC and with active participation from several industry partners. Under this program, 25 NY City transit buses with DDC Series 50 engines have been equipped with continuously regenerating diesel particulate filter systems and have been operating with ultra low sulfur diesel (< 30 ppm S) in transit service in Manhattan since February 2000. These buses were evaluated over a 9 month period for operations, maintainability and durability of the particulate filter.
Technical Paper

Performance and Durability Evaluation of Continuously Regenerating Particulate Filters on Diesel Powered Urban Buses at NY City Transit

2001-03-05
2001-01-0511
Particulate emission from diesel engines is one of the most important pollutants in urban areas. As a result, particulate emission control from urban bus diesel engines using particle filter technology is being evaluated at several locations in the US. A project entitled “Clean Diesel Demonstration Program” has been initiated by NY City Transit under the supervision of NY State DEC and with active participation from several industrial partners. Under this program, several NY City transit buses with DDC Series 50 engines have been equipped with continuously regenerating diesel particulate filter system and are operating with ultra low sulfur diesel (< 30 ppm S) in transit service in Manhattan since February 2000. These buses are being evaluated over a 8-9 month period for operations, maintainability and durability of the particulate filter.
Technical Paper

On-Road Use of Fischer-Tropsch Diesel Blends

1999-04-27
1999-01-2251
Alternative compression ignition engine fuels are of interest both to reduce emissions and to reduce U.S. petroleum fuel demand. A Malaysian Fischer-Tropsch gas-to-liquid fuel was compared with California #2 diesel by characterizing emissions from over the road Class 8 tractors with Caterpillar 3176 engines, using a chassis dynamometer and full scale dilution tunnel. The 5-Mile route was employed as the test schedule, with a test weight of 42,000 lb. Levels of oxides of nitrogen (NOx) were reduced by an average of 12% and particulate matter (PM) by 25% for the Fischer-Tropsch fuel over the California diesel fuel. Another distillate fuel produced catalytically from Fischer-Tropsch products originally derived from natural gas by Mossgas was also compared with 49-state #2 diesel by characterizing emissions from Detroit Diesel 6V-92 powered transit buses, three of them equipped with catalytic converters and rebuilt engines, and three without.
Technical Paper

NOx and PM Reduction Using Combined SCR and DPF Technology in Heavy Duty Diesel Applications

2005-11-01
2005-01-3548
The application of oxidation catalyst and particulate filter technology for the reduction of particulate matter (PM), hydrocarbons (HC) and carbon monoxide (CO) emissions from heavy duty diesel engines has become an established practice. The design and performance of such systems have been commercially proven to the point that the application of these technologies is cost effective and durable. The application of an effective NOx reduction technology in heavy duty diesel applications is more complicated since there are no passive NOx reduction technologies that can be fit onto HDD vehicles. However, Selective Catalytic Reduction (SCR) systems using Urea injection to achieve NOx reduction have become the technology of choice in Europe and have been applied to achieve Euro IV emissions levels on new HDD vehicles. In addition, retrofit SCR emission control systems have also been developed that can provide high NOx reduction when applied on existing HDD vehicles.
Technical Paper

NOx and PM Control from Heavy Duty Diesel Engines Using a Combination of Low Pressure EGR and Continuously Regenerating Diesel Particulate Filter

2003-03-03
2003-01-0048
With growing concerns about NOx and particulate matter (PM) emissions from diesel engines, stricter regulations are being implemented which require advanced emission control technology. This paper discusses the combination of a diesel particle filter system (DPF) with a low pressure exhaust gas re-circulation (EGR) system to provide four way emission control of NOx, PM, CO and HC from existing heavy duty diesel engines. The combined EGR-DPF system has been used in Europe over the past 4 years, with over 1200 systems installed on urban buses and other on-road applications. This system has shown 40-60% NOx reduction in addition to >90% CO, HC and PM reductions. Recently, several field trial programs have been initiated to evaluate the performance and durability of this EGR-DPF system under US operational conditions. These include retrofit applications on urban buses and on construction trucks.
Technical Paper

Long-Term Durability of Passive Diesel Particulate Filters on Heavy-Duty Vehicles

2004-03-08
2004-01-0079
A multi-year technology validation program was completed in 2001 to evaluate ultra-low sulfur diesel fuels and passive diesel particle filters (DPF) in several different diesel fleets operating in Southern California. The fuels used throughout the validation program were diesel fuels with less than 15-ppm sulfur content. Trucks and buses were retrofitted with two types of passive DPFs. Two rounds of emissions testing were performed to determine if there was any degradation in the emissions reduction. The results demonstrated robust emissions performance for each of the DPF technologies over a one-year period. Detailed descriptions of the overall program and results have been described in previous SAE publications [2, 3, 4, 5]. In 2002, a third round of emission testing was performed by NREL on a small subset of vehicles in the Ralphs Grocery Truck fleet that demonstrated continued robust emissions performance after two years of operation and over 220,000 miles.
Technical Paper

Heavy Duty Diesel Engine Emission Control to Meet BS VI Regulations

2017-01-10
2017-26-0125
The next generation advanced emission regulations have been proposed for the Indian heavy duty automotive industry for implementation from 2020. These BS VI emission regulations will require both advanced NOx control as well as advanced PM (Particulate Matter) control along with Particle Number limitations. This will require implementation of full DPF (Diesel Particulate Filter) and simultaneous NOx control using SCR technologies. DPF technologies have already been successfully implemented in Euro VI and US 10 HDD systems. These systems use low temperature NO2 based passive DPF regeneration as well as high temperature oxygen based active DPF regeneration. Effective DPF and DOC designs are essential to enable successful DPF regeneration (minimize soot loading in the DPF) while operating HDD vehicles under transient conditions. DOC designs are optimized to oxidize engine out NO into NO2, which helps with passive DPF regeneration.
Technical Paper

HEAVY DUTY VEHICLE EXHAUST PLUME STUDY IN THE NASA/LANGLEY WIND TUNNEL

2003-05-19
2003-01-1895
Concern over health effects associated with diesel exhaust and debate over the influence of high number counts of particles in diesel exhaust prompted research to develop a methodology for diesel particulate matter (PM) characterization. As part of this program, a tractor truck with an electronically managed diesel engine and a dynamometer were installed in the Old Dominion University (ODU) Langley full-scale wind tunnel. This arrangement permitted repeat measurements of diesel exhaust under realistic and reproducible conditions and permitted examination of the steady exhaust plume at multiple points. Background particle size distribution was characterized using a Scanning Mobility Particle Sizer (SMPS). In addition, a remote sampling system consisting of a SMPS, PM filter arrangement, and carbon dioxide (CO2) analyzer, was attached to a roving gantry allowing for exhaust plume sampling in a three dimensional grid. Raw exhaust CO2 levels and truck performance data were also measured.
Technical Paper

Fuel Property, Emission Test, and Operability Results from a Fleet of Class 6 Vehicles Operating on Gas-To-Liquid Fuel and Catalyzed Diesel Particle Filters

2004-10-25
2004-01-2959
A fleet of six 2001 International Class 6 trucks operating in southern California was selected for an operability and emissions study using gas-to-liquid (GTL) fuel and catalyzed diesel particle filters (CDPF). Three vehicles were fueled with CARB specification diesel fuel and no emission control devices (current technology), and three vehicles were fueled with GTL fuel and retrofit with Johnson Matthey's CCRT™ diesel particulate filter. No engine modifications were made. Bench scale fuel-engine compatibility testing showed the GTL fuel had cold flow properties suitable for year-round use in southern California and was additized to meet current lubricity standards. Bench scale elastomer compatibility testing returned results similar to those of CARB specification diesel fuel. The GTL fuel met or exceeded ASTM D975 fuel properties. Researchers used a chassis dynamometer to test emissions over the City Suburban Heavy Vehicle Route (CSHVR) and New York City Bus (NYCB) cycles.
Technical Paper

Final Operability and Chassis Emissions Results from a Fleet of Class 6 Trucks Operating on Gas-to-Liquid Fuel and Catalyzed Diesel Particle Filters

2005-10-24
2005-01-3769
Six 2001 International Class 6 trucks participated in a project to determine the impact of gas-to-liquid (GTL) fuel and catalyzed diesel particle filters (DPFs) on emissions and operations from December 2003 through August 2004. The vehicles operated in Southern California and were nominally identical. Three vehicles operated “as-is” on California Air Resources Board (CARB) specification diesel fuel and no emission control devices. Three vehicles were retrofit with Johnson Matthey CCRT® (Catalyzed Continuously Regenerating Technology) filters and fueled with Shell GTL Fuel. Two rounds of emissions tests were conducted on a chassis dynamometer over the City Suburban Heavy Vehicle Route (CSHVR) and the New York City Bus (NYCB) cycle. The CARB-fueled vehicles served as the baseline, while the GTL-fueled vehicles were tested with and without the CCRT filters. Results from the first round of testing have been reported previously (see 2004-01-2959).
Technical Paper

Engine Performance of Cu- and Fe-Based SCR Emission Control Systems for Heavy Duty Diesel Applications

2011-04-12
2011-01-1329
Since early 2010, most new medium- and heavy-duty diesel vehicles in the US rely on urea-based Selective Catalytic Reduction (SCR) technology for meeting the most stringent regulations on nitrogen oxides (NOx) emissions in the world today. Catalyst technologies of choice include Copper (Cu)- and Iron (Fe)-based SCR. In this work, the performances of Fe-SCR and Cu-SCR were investigated in the most commonly used DOC + CSF + SCR system configuration. Cu-SCR offered advantages over Fe-SCR in terms of low temperature conversion, NO₂:NOx ratio tolerance and NH₃ slip, while Fe-SCR demonstrated superior performance under optimized NO₂:NOx ratio and at higher temperatures. The Cu-SCR catalyst displayed less tolerance to sulfur (S) exposure. Reactor testing has shown that Cu-SCR catalysts deactivate at low temperature when poisoned by sulfur.
Technical Paper

Emissions from Trucks using Fischer-Tropsch Diesel Fuel

1998-10-19
982526
The Fischer-Tropsch (F-T) catalytic conversion process can be used to synthesize diesel fuels from a variety of feedstocks, including coal, natural gas and biomass. Synthetic diesel fuels can have very low sulfur and aromatic content, and excellent autoignition characteristics. Moreover, Fischer-Tropsch diesel fuels may also be economically competitive with California diesel fuel if produced in large volumes. An overview of Fischer-Tropsch diesel fuel production and engine emissions testing is presented. Previous engine laboratory tests indicate that F-T diesel is a promising alternative fuel because it can be used in unmodified diesel engines, and substantial exhaust emissions reductions can be realized. The authors have performed preliminary tests to assess the real-world performance of F-T diesel fuels in heavy-duty trucks. Seven White-GMC Class 8 trucks equipped with Caterpillar 10.3 liter engines were tested using F-T diesel fuel.
Technical Paper

Emissions from Buses with DDC 6V92 Engines Using Synthetic Diesel Fuel

1999-05-03
1999-01-1512
Synthetic diesel fuel can be made from a variety of feedstocks, including coal, natural gas and biomass. Synthetic diesel fuels can have very low sulfur and aromatic content, and excellent autoignition characteristics. Moreover, synthetic diesel fuels may also be economically competitive with California diesel fuel if produced in large volumes. Previous engine laboratory and field tests using a heavy-duty chassis dynamometer indicate that synthetic diesel fuel made using the Fischer-Tropsch (F-T) catalytic conversion process is a promising alternative fuel because it can be used in unmodified diesel engines, and can reduce exhaust emissions substantially. The objective of this study was a preliminary assessment of the emissions from older model transit operated on Mossgas synthetic diesel fuel. The study compared emissions from transit buses operating on Federal no. 2 Diesel fuel, Mossgas synthetic diesel (MGSD), and a 50/50 blend of the two fuels.
Technical Paper

Emission Reductions and Operational Experiences With Heavy Duty Diesel Fleet Vehicles Retrofitted with Continuously Regenerated Diesel Particulate Filters in Southern California

2001-03-05
2001-01-0512
Particulate emission control from diesel engines is one of the major concerns in the urban areas in California. Recently, regulations have been proposed for stringent PM emission requirements from both existing and new diesel engines. As a result, particulate emission control from urban diesel engines using advanced particulate filter technology is being evaluated at several locations in California. Although ceramic based particle filters are well known for high PM reductions, the lack of effective and durable regeneration system has limited their applications. The continuously regenerated diesel particulate filter (CRDPF) technology discussed in this presentation, solves this problem by catalytically oxidizing NO present in the diesel exhaust to NO2 which is utilized to continuously combust the engine soot under the typical diesel engine operating condition.
Technical Paper

Emission Reduction in On-road Heavy Duty Diesel Applications with the Continuously Regenerating Technology (CRT®) Diesel Particulate Filter

2001-11-01
2001-28-0049
Particulate emission from diesel engines is one of the most important pollutants in urban areas. With increasing worldwide regulatory requirements to lower particulate matter (PM) standards for heavy duty diesel powered vehicles, the interest in diesel particulate filter based emission control solutions such as the Continuously Regenerating Technology (CRT®) have significantly increased. This system has been applied to thousands of heavy-duty diesel vehicles in Europe over the last six years to meet various local and governmental requirements, while recently introduced in the US. Among the numerous demonstration programs taking place in the US, one important one is the evaluation of CRT filter systems on urban transit buses in NY City. Here, several NY City transit buses with DDC Series 50 engines have been equipped with CRT filters and operating on ultra low sulfur diesel (< 30 ppm S) in transit service in Manhattan since February 2000.
Technical Paper

Emission Control Options to Achieve Euro IV and Euro V on Heavy Duty Diesel Engines

2008-01-09
2008-28-0021
The modern Diesel engine is one of the most versatile power sources available for mobile applications. The high fuel economy and torque of the Diesel engine has long resulted in global application for heavy-duty applications. Moreover, the high power and excellent driveability of today's turbo-charged small high-speed Diesel engines, coupled with their low CO2 emissions, has resulted in an increasing demand for Diesel powered light-duty vehicles. However, the demand for Diesel vehicles can only be realised if their exhaust emissions meet the increasingly stringent emissions legislation being introduced around the world. In the USA, both HDD and LDD vehicles are meeting strict emissions legislations since 2007 with the introduction of particle filters which will be further restricted from 2010 with the use of additional NOx contr5ol systems. In Europe, similar strict requirements are being implemented with Euro IV, Euro V and finally through Euro VI legislations.
Technical Paper

Diethyl Ether (DEE) as a Renewable Diesel Fuel

1997-10-01
972978
Producing and using renewable fuels for transportation is one approach for a sustainable energy future for the United States, as well as the rest of the world. Renewable fuels may also substantially reduce contributions to global climate change. In the transportation sector, ethanol produced from biomass shows promise as a future fuel for spark-ignited engines because of its high octane quality. Ethanol, however, is not a high-quality compression-ignition fuel. Ethanol can be easily converted through a dehydration process to produce diethyl ether (DEE), which is an excellent compression-ignition fuel with higher energy density than ethanol. DEE has long been known as a cold-start aid for engines, but little is known about using DEE as a significant component in a blend or as a complete replacement for diesel fuel.
Technical Paper

Development of an Actively Regenerating DPF System for Retrofit Applications

2006-10-31
2006-01-3553
Diesel Particulate Filters (DPFs) such as the Continuously Regenerating Technology (CRT®) particulate filters are known to be highly effective in reducing PM emissions from diesel engines. Passive DPFs such as the CRT filter operate by collecting soot in the filter and subsequently oxidizing this soot in the presence of NO2 generated by an upstream Diesel Oxidation Catalyst (DOC). Both the NO2 generation and subsequent soot oxidation reactions require a certain minimum exhaust temperature. In addition, the engine out NOx to PM ratio is also critical for continuous and successful regeneration of the filter. However, these criteria may not always be met, particularly on low temperature applications such as refuse vehicles and newer low NOx (2.5 g/bhp-hr NOx) engines. This paper discusses the development of an actively regenerating diesel particulate filter (ACR-DPF) system for retrofit applications on heavy duty diesel vehicles.
X