Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

“OPERAS” In Advanced Diesel Engines for Commercial and Military Applications

2006-04-03
2006-01-0927
Advanced diesel engines developed for the commercial market need to be adapted to the military requirements by OPERAS (Optimizing the injection pressure P, the Exhaust gas recirculation E, injection events Retard and/or Advance and the swirl ratio S). The different after treatment devices, already used or expected to be applied to diesel engines, require feed gases of appropriate properties for their efficient operation. To produce these gases some OPERAS are needed to control the diesel combustion process. Since military vehicles do not need the after treatment devices, the OPERAS of the commercial engines should be modified to meet the military requirements for high power density, better fuel economy, reduction of parasitic losses caused by the cooled EGR system, and reduction of invisible black and white smoke in the field.
Technical Paper

“Influence of Engine Variables on Exhaust Oxides of Nitrogen Concentrations from a Multi-Cylinder Engine”

1967-02-01
670482
The influence of engine variables on the concentration of oxides of nitrogen present in the exhaust of a multicylinder engine was studied. The concentrations of nitric oxide (NO) were measured with either a mass spectrometer or a non-dispersive infrared analyzer. The NO concentration was low for rich operation (deficient in oxygen) and increased with air-fuel ratio to a peak value at ratios slightly leaner than stoichiometric proportions. A further increase in air-fuel ratio resulted in reduced NO concentrations. Advanced spark timing, decreased manifold vacuum, increased coolant temperature and combustion chamber deposit buildup were also found to increase exhaust NO concentration. These results support either directly or indirectly the hypothesis that exhaust NO concentration is primarily a result of the peak combustion gas temperature and the available oxygen.
Technical Paper

“Doing More with Less” - The Fuel Economy Benefits of Cooled EGR on a Direct Injected Spark Ignited Boosted Engine

2010-04-12
2010-01-0589
Due to the rising costs of fuel and increasingly stringent regulations, auto makers are in need of technology to enable more fuel-efficient powertrain technologies to be introduced to the marketplace. Such powertrains must not sacrifice performance, safety or driver comfort. Today's engine and powertrain manufacturers must, therefore, do more with less by achieving acceptable vehicle performance while reducing fuel consumption. One effective method to achieve this is the extreme downsizing of current direct injection spark ignited (DISI) engines through the use of high levels of boosting and cooled exhaust gas recirculation (EGR). Key challenges to highly downsized gasoline engines are retarded combustion to prevent engine knocking and the necessity to operate at air/fuel ratios that are significantly richer than the stoichiometric ratio.
Technical Paper

λDSF: Dynamic Skip Fire with Homogeneous Lean Burn for Improved Fuel Consumption, Emissions and Drivability

2018-04-03
2018-01-0891
Dynamic skip fire (DSF) has shown significant fuel economy improvement potential via reduction of pumping losses that generally affect throttled spark-ignition (SI) engines. In DSF operation, individual cylinders are fired on-demand near peak efficiency to satisfy driver torque demand. For vehicles with a downsized-boosted 4-cylinder engine, DSF can reduce fuel consumption by 8% in the WLTC (Class 3) drive cycle. The relatively low cost of cylinder deactivation hardware further improves the production value of DSF. Lean burn strategies in gasoline engines have also demonstrated significant fuel efficiency gains resulting from reduced pumping losses and improved thermodynamic characteristics, such as higher specific heat ratio and lower heat losses. Fuel-air mixture stratification is generally required to achieve stable combustion at low loads.
Technical Paper

and Repeatability of Transient Heat Release Analysis for Heavy Duty Diesel Engines

2009-04-20
2009-01-1125
Reduced emissions, improved fuel economy, and improved performance are a priority for manufacturers of internal combustion engines. However, these three goals are normally interrelated and difficult to optimize simultaneously. Studying the experimental heat release provides a useful tool for combustion optimization. Heavy-duty diesel engines are inherently transient, even during steady state operation engine controls can vary due to exhaust gas recirculation (EGR) or aftertreatment requirements. This paper examines the heat release and the derived combustion characteristics during steady state and transient operation for a 1992 DDC series 60 engine and a 2004 Cummins ISM 370 engine. In-cylinder pressure was collected during repeat steady state SET and the heavy-duty transient FTP test cycles.
Technical Paper

Zero-Dimensional Spark Ignition Combustion Modeling - A Comparison of Different Approaches

2013-09-08
2013-24-0022
Internal combustion engines development with increased complexity due to CO2 reduction and emissions regulation, while reducing costs and duration of development projects, makes numerical simulation essential. 1D engine simulation software response for the gas exchange process is sufficiently accurate and quick. However, combustion simulation by Wiebe function is poorly predictive. The objective of this paper is to compare different approaches for 0D Spark Ignition (SI) modeling. Versions of Eddy Burn Up, Fractal and Flame Surface Density (FSD) models have been coded into GT-POWER platform, which connects thermodynamics, gas exchange and combustion sub-models. An initial flame kernel is imposed and then, the flame front propagates spherically in the combustion chamber. Flame surface is tabulated as a function of piston position and flame radius. The modeling of key features of SI combustion such as laminar flame speed and thickness and turbulence was common.
Journal Article

Zero-Dimensional Modeling of Combustion and Heat Release Rate in DI Diesel Engines

2012-04-16
2012-01-1065
Zero-dimensional heat release rate models have the advantage of being both easy to handle and computationally efficient. In addition, they are capable of predicting the effects of important engine parameters on the combustion process. In this study, a zero-dimensional combustion model based on physical and chemical sub-models for local processes like injection, spray formation, ignition and combustion is presented. In terms of injection simulation, the presented model accounts for a phenomenological nozzle flow model considering the nozzle passage inlet configuration and an approach for modeling the characteristics of the Diesel spray and consequently the mixing process. A formulation for modeling the effects of intake swirl flow pattern, squish flow and injection characteristics on the in-cylinder turbulent kinetic energy is presented and compared with the CFD simulation results.
Technical Paper

Zero Dimensional Models for EGR Mass-Rate and EGR Unbalance Estimation in Diesel Engines

2017-09-04
2017-24-0070
A precise estimation of the recirculated exhaust gas rate and oxygen concentration as well as a predictive evaluation of the possible EGR unbalance among cylinders are of paramount importance, especially if non-conventional combustion modes, which require high EGR flow-rates, are implemented. In the present paper, starting from the equation related to convergent nozzles, the EGR mass flow-rate is modeled considering the pressure and the temperature upstream of the EGR control valve, as well as the pressure downstream of it. The restricted flow-area at the valve-seat passage and the discharge coefficient are carefully assessed as functions of the valve lift. Other models were fitted using parameters describing the engine working conditions as inputs, following a semi-physical and a purely statistical approach. The resulting models are then applied to estimate EGR rates to both conventional and non-conventional combustion conditions.
Journal Article

X-Ray Radiography Measurements of the Thermal Energy in Spark Ignition Plasma at Variable Ambient Conditions

2017-09-04
2017-24-0178
The sparking behavior in an internal combustion engine affects the fuel efficiency, engine-out emissions, and general drivability of a vehicle. As emissions regulations become progressively stringent, combustion strategies, including exhaust gas recirculation (EGR), lean-burn, and turbocharging are receiving increasing attention as models of higher efficiency advanced combustion engines with reduced emissions levels. Because these new strategies affect the working environment of the spark plug, ongoing research strives to understand the influence of external factors on the spark ignition process. Due to the short time and length scales involved and the harsh environment, experimental quantification of the deposited energy from the sparking event is difficult to obtain. In this paper, we present the results of x-ray radiography measurements of spark ignition plasma generated by a conventional spark plug.
Technical Paper

Worldwide Trends in Heavy-Duty Diesel Engine Exhaust Emission Legislation and Compliance Technologies

1997-02-24
970753
This paper reviews the trend in worldwide exhaust emission regulations for heavy-duty diesel engines and common key technologies that must be developed and applied in order to meet these regulations. The common key technologies are intake and exhaust system with turbocharger and intercooler, electronically controlled high-pressure fuel injection system, exhaust gas recirculation, and exhaust gas after-treatment devices. This paper also introduces test results of common key technologies, concepts for low-emission heavy-duty diesel engines, and the possibilities for meeting future exhaust emission legislation is described.
Technical Paper

World Wide Escort/Lynx Engine Design and Development

1981-02-01
810008
In 1981, Ford Motor Company introduced a new family of fuel efficient four cylinder engines world wide. These engines, based on a compound valve arrangement in a hemispherical combustion chamber, were specifically designed for installation in light weight front-wheel-drive vehicles. Ford Research efforts were integrated with the resources of Ford U.S. and Ford of Europe to design and develop the engine in a compressed time frame. The technical and organizational efforts to accomplish this task, as well as, the design and development are discussed.
Technical Paper

Working Fluid Properties Variation During Combustion in Premixed Charge Hydrogen Engines

2012-09-10
2012-01-1646
Several studies have been performed to investigate the effects of using hydrogen in spark ignition (SI) engines. One general conclusion that emerged was that stoichiometric operation of premixed charge hydrogen engines features increased losses compared to other fuels such as methane. Most studies attribute this higher loss to increased rates of heat transfer from the working fluid to the combustion chamber walls. Indeed, heat flux measurements during combustion and expansion recorded much higher values for hydrogen compared to methane stoichiometric operation. With regard to fluid properties, using the same net heat release equation as for gasoline engines results in an over prediction of heat losses to the combustion chamber walls. Also, the variation of specific heats ratio greatly influences calculated values for the rate of heat release. Therefore, a more detailed analysis of heat losses is required when comparing hydrogen to other fuels.
Technical Paper

Wire Mesh Mixer Optimization for DEF Deposit Prevention

2015-04-14
2015-01-0989
Diesel engine NOx emissions requirements have become increasingly stringent over the past two decades. Engine manufacturers have shown through the use of EGR and SCR technology that these requirements can be met. However, the desires for improved fuel efficiency, lower overall cost, and potential legislation to reduce NOx levels further increase the demand for higher DEF dosing rates. To meet this demand, a new DEF mixing technology has been developed. This paper describes the development methods used to create a compact, in-pipe mixer which utilizes an optimized wire mesh along with swirling flow to permit high DEF dosing rates without deposit formation. Its excellent mixing characteristics allowed for high NOx reduction to be achieved. Utilization of this technology makes it possible to reduce regeneration frequency, reduce the overall size of the SCR system, possibly eliminate the EGR system, and improve fuel efficiency through combustion enhancements.
Event

Why Attend - Energy & Propulsion Conference & Exhibition

2024-04-27
For an open exchange about the most promising new propulsion/powertrain-related technologies for light-, medium-, and heavy-duty vehicles, the SAE 2023 Powertrains, Fuels & Lubricants Conference & Exhibition (PF&L) is where you need to be.
Event

Why Attend - Energy & Propulsion Conference & Exhibition

2024-04-27
For an open exchange about the most promising new propulsion/powertrain-related technologies for light-, medium-, and heavy-duty vehicles, the SAE 2023 Powertrains, Fuels & Lubricants Conference & Exhibition (PF&L) is where you need to be.
Technical Paper

What About the Engine?

1939-01-01
390147
MR. TAUB predicts that the time for intensive work on the fuel-economy problem, such as has been done recently in England, is near at hand because of the imminence of increased fuel taxation. Tank mileage, he explains, depends on the ability of an engine to utilize lean mixtures- not just lean mixture from the carburetor, but modification of an engine to burn these lean mixtures without interference with flexibility or performance in any way. A study of what happens in the combustion chamber is cited as the major opportunity for engineering improvement in the ability to burn lean mixtures. In his discussion of his work at Vauxhall Motors, Mr. Taub considers wide gaps and their effect on ignition lag, long-reach spark plugs, tappet adjustment, effect of higher compression ratios, variation per cycle, detonation, and means of forecasting combustion roughness.
Technical Paper

Ways to Meet Future Emission Standards with Diesel Engine Powered Sport Utility Vehicles (SUV)

2000-03-06
2000-01-0181
The paper reports on the outcome of a still on-going joint-research project with the objective of establishing a demonstrator high speed direct injection (HSDI) diesel engine in a Sport Utility Vehicle (SUV) which allows to exploit the effectiveness of new engine and aftertreatment technologies for reducing exhaust emissions to future levels of US/EPA Tier 2 and Euro 4. This objective should be accomplished in three major steps: (1) reduce NOx by advanced engine technologies (cooled EGR, flexible high pressure common rail fuel injection system, adapted combustion system), (2) reduce particulates by the Continuous Regeneration Trap (CRT), and (3) reduce NOx further by a DeNOx aftertreatment technology. The current paper presents engine and vehicle results on step (1) and (2), and gives an outlook to step (3).
X