Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

What Are the Barriers Against Brake Thermal Efficiency beyond 55% for HD Diesel Engines?

2021-09-05
2021-24-0039
This study focused on the technology integration to aim beyond 60% indicated thermal efficiency (ITE) with a single-cylinder heavy-duty diesel engine as an alternative to achieve 55% brake thermal efficiency (BTE) with multiple-cylinder engines. Technology assessment was initially carried out by means of a simple chart of showing ITE and exhaust heat loss as functions of cooling loss and heat conversion efficiency into indicated work. The proposed compression ratio (28:1), excess air ratio and new ideal thermodynamic cycle were then determined by a simple cycle calculation. Except for peak cylinder pressure constraint for each engine, the technical barriers for further ITE improvement are mainly laid in cooling loss reduction, fuel-air mixture formation improvement, and heat release rate optimization under very high temperature and density conditions with very high compression ratio (smaller cavity volume).
Technical Paper

Visualization Experiment in a Transparent Engine With Pure and Mixed Normal Paraffin Fuels

2004-06-08
2004-01-2018
In the previous study design of two-component normal paraffin fuel was attempted considering the components and blending ratio. Only the thermodynamic analysis of combustion and analysis of emission characteristics were performed to evaluate the design performance. In this study mixture formation behavior and combustion phenomena of pure and mixed n-paraffin fuels were investigated by direct visualization in an AVL engine with bottom view piston. The experiments included laser-illuminated high-speed photography of the fuel injection phase and combustion phase to investigate physical differences. The results obtained for the proposed fuels are compared with the results of conventional diesel fuel. It was found that the two component normal paraffin fuels with similar thermo physical properties have very similar spray development pattern but evaporation rates are different.
Technical Paper

Utilizing FAME as a Cetane Number Improver for a Light-duty Diesel Engine

2014-04-01
2014-01-1392
As the petroleum depletion, some of this demand will probably have to be met by increasing the production of diesel fuels from heavy oil or unconventional oil in the near future. Such fuels may inevitably have a lower cetane number (CN) with a higher concentration of aromatic components. The objective of the present research is to identify the effects of a typical biodiesel fuel as a CN improver for a light-duty diesel engine for passenger cars. Our previous study indicates that methyl oleate (MO), which is an oxygenated fuel representative of major constituents of many biodiesel types, can reduce soot and NOx emissions simultaneously by optimizing performance under exhaust gas recirculation (EGR) when used as a diesel fuel additive. In addition, it was found that MO tends to reduce the ignition delay. We employed a 2.2 L passenger car DI diesel engine complying with the Euro 4 emissions regulation.
Technical Paper

Thermal Efficiency Comparison of Different Injector Constellations in a CI Engine

2019-09-09
2019-24-0172
More stringent emission regulations call for high-efficiency engines in the heavy-duty vehicle sector. Towards this goal, reduced heat losses, as well as increased work output, are needed. In this study, a multiple injector concept to control the combustion as well as reduce the hot boundary zones is proposed. Earlier studies have proven that multiple injectors experience lower heat losses and higher efficiency. However, a comprehensive investigation of the causes for experimental heat loss was not performed in depth. Experiments in a heavy-duty CI engine equipped with three injectors were thus performed. Engine configurations of single, dual and triple injectors were compared for a single-injection case as well as a multi-injection (Sabathe-cycle) case. Heat losses, efficiency and the emission levels were quantified and investigated. Optical experiments were performed to investigate the temperature field as well as flame behavior.
Technical Paper

The Effects of Jatropha-derived Biodiesel on Diesel Engine Combustion and Emission Characteristics

2012-09-10
2012-01-1637
The objective of the present research is to investigate the effects on diesel engine combustion and NOx and PM emission characteristics in case of blending the ordinary diesel fuel with biodiesel in passenger car diesel engines. Firstly, we conducted experiments to identify the combustion and emissions characteristics in a modern diesel engine complying with the EURO 4 emission standard. Then, we developed a numerical simulation model to explain and generalize biodiesel combustion phenomena in detail and generalize emission characteristics. The experimental and simulation results are useful to reduce biodiesel emissions by controlling engine operating and design parameters in the diesel engine. Engine tests were conducted and a mathematical model created to investigate the effects of 40% and 100% methyl oleate modeled fuel representing Jatropha-derived biodiesel on diesel combustion and emission characteristics, over a wide range of passenger car DI diesel engine operating conditions.
Technical Paper

The Effects of Fuel Temperature on a Direct Injection Gasoline Spray in a Constant Volume Chamber

2003-05-19
2003-01-1810
Fuel temperature in the injector of small direct injection gasoline engine is high. On some conditions it is higher than saturated temperature. Over saturated temperature spray characteristics greatly change. In order to predict in-cylinder phenomena accurately, it is important to understand spray behavior and mixture process above saturated temperature. Therefore spray shape, mixture formation process and Sauter mean radius were (SMR) measured in a constant volume chamber. And based on the measurement result initial spray boundary conditions were arranged so that spray characteristics over saturated temperature could be represented by using CFD code KIVA-3[1]. Moreover KIVA-3 code was combined with detailed chemical kinetics code Chemkin II to predict combustion products. [2] Calculated combustion process was validated with visualization of chemiluminescence. As a result, spray shape and penetration length have good agreement with measured ones for each fuel temperature.
Technical Paper

The Control of Diesel Emissions by Supercharging and Varying Fuel-injection Parameters

1992-02-01
920117
A study has been made of an automotive direct injection diesel engine designed to reduce exhaust emissions, particularly NOx and particulates, without performance deterioration. Special emphasis has been placed on air-fuel mixing conditions controlled by the fuel injection rate, the intake swirl ratio, and the intake boost pressure. By means of increasing the injection rate, ignition delay can be shortened enough to improve particulate emissions at retarded injection timings. Enhancing the intake swirl velocity contributes to the reduction of soot emission in spite of the deterioration of NOx emission. Supercharging can favorably enhance diffusion combustion resulting in improved fuel economy for retarded injection timings and reduced emissions. As a result, a good compromise can be achieved between fuel economy and exhaust emissions by increasing the injection rate along with retarding the injection timing. Supercharging was found to be more favorable than swirl enhancement.
Technical Paper

The Cold Flow Performance and the Combustion Characteristics with Ethanol Blended Biodiesel Fuel

2005-10-24
2005-01-3707
The purpose of this study is to improve low-temperature flow-properties of biodiesel fuels (BDF) by blending with ethanol and to analyze the combustion characteristics in a diesel engine fueled with BDF/ethanol blended fuel. Because ethanol has a lower solidifying temperature, higher oxygen content, lower cetane number, and higher volatility than BDF, ethanol blending would have a large effect on cold flow performance, mixture formation, ignition, combustion, and exhaust emissions. The engine experiments in the study were performed with a diesel engine and blends of BDF and ethanol at different blending ratios. The cold flow performance of the blended fuels was evaluated by determining the fuel cloud point. The experimental results show that the ethanol blending lowers the cloud point of the blended fuel and significantly reduces smoke emissions from the engine without deteriorating other emissions or thermal efficiency.
Technical Paper

Study on Regeneration of Diesel Particle Trapper by Electrical Self-Heating Type Filter

1992-02-01
920140
The cordierite filter has been widely studied because of it's inherent, high capacities in the collection efficiency and heat-resistance. During the regeneration process of a cordierite filter, failure of ignition or incomplete burning propagation occurs, and additionally melts or cracks develop sometimes. In this study, the problems stated above are considered from a new standpoint, and a regeneration method that does not strictly depend on accumulated soot quantity is discussed. A filter made of SiC (Silicon carbide) possesses the requisite electric resistance and it's possible to heat it uniformly by using electricity. Accumulated soot can be uniformly incinerated not by burning propagation but by simultaneous ignition and burning of all accumulated soot. Silicon carbide has a higher resistance to heat than cordierite. Therefore, a self-heating filter made of SiC makes it possible to regenerate the filter in a wider range of accumulated soot.
Technical Paper

Study on Novel Combustion Technologies to Achieve “High-heels” Heat Release Rate Profile in a Higher-compression-ratio Diesel Engine

2023-09-29
2023-32-0077
For further increase in thermal efficiency of heavy-duty diesel engines, flexible regulation of the heat release rate (HRR) profile combined with higher compression ratio could have more rooms to improve indicated thermal efficiency by overcoming various drawbacks relevant to higher compression ratio. A new ideal HRR profile, which starts as a kind of delta shape to fulfil the isobaric cycle from top-dead-center (TDC) and is followed by the significant increase in HRR to reach the maximum cylinder pressure in the retarded timing, was proposed. We call it as ‘High-heels’ HRR profile from its two-step-increase delta shape. To confirm the potential of the ideal HRR profile by utilizing a single- cylinder heavy-duty diesel engine, a variable fuel injection rate equipment, novel combustion chamber designs, and an offset orifices nozzle were investigated as the technologies for modifying HRR profile.
Technical Paper

Study of Knock Control in Small Gasoline Engines by Multi-Dimensional Simulation

2006-11-13
2006-32-0034
To suppress knock in small gasoline engines, the coolant flow of a single-cylinder engine was improved by using two methods: a multi-dimensional knock prediction method combining a Flamelet model with a simple chemical kinetics model, and a method for predicting combustion chamber wall temperature based on a thermal fluid calculation that coupled the engine coolant and the engine structure (engine head, cylinder block, and head gasket). Through these calculations as well as the measurement of wall temperatures and the analysis of combustion by experiments, the effects of wall temperature distribution and consequent unburnt gas temperature distribution on knock onset timing and location were examined. Furthermore, a study was made to develop a method for cooling the head side, which was more effective to suppress knock: the head gasket shape was modified to change the coolant flow and thereby improve the distribution of wall temperatures on the head side.
Technical Paper

Study of Higher Alcohol Potential as a Drop-In Fuel for a High Thermal Efficiency Heavy-Duty Diesel Engine

2023-08-28
2023-24-0049
To reduce carbon dioxide (CO2) emissions from heavy-duty diesel engines down to zero until 2050, alternative powertrain strategies have been proposed in lieu of the improvements in internal combustion engines (ICEs). However, total amount of renewable electricity could be limited for the constructing infrastructure, the production of new battery and/or fuel cell vehicles and the operation of them compared with the growing demand of transportation in the future. Therefore, drastic improvement in transport efficiency with suppressing the increase of total CO2 emissions is essential. From these points of view, extremely high efficiency ICEs, combined or at least compatible with carbon neutral or renewable fuels having the capability of drop-in into the conventional fuels, should be attracted attention. Nevertheless, there have been few studies on the effects of fuel properties for further improving fuel consumption of diesel ICEs.
Technical Paper

Simulating Exhaust Emissions Characteristics and Their Improvements in a Glow-Assisted DI Methanol Engine Using Combustion Models Combined with Detailed Kinetics

1997-05-01
971598
An experimental and numerical study has been conducted on the emission and reduction of HCHO (formaldehyde) and other pollutants formed in the cylinder of a direct-injection diesel engine fueled by methanol. Engine tests were performed under a variety of intake conditions including throttling, heating, and EGR (exhaust gas recirculation) for the purpose of improving these emissions by changing gas compositions and combustion temperatures in the cylinder. Moreover, a detailed kinetics model was developed and applied to methanol combustion to investigate HCHO formation and the reduction mechanism influenced by associated elementary reactions and in-cylinder mixing.
Technical Paper

SOF Component of Lubricant Oil on Diesel PM in a High Boosted and Cooled EGR Engine

2007-04-16
2007-01-0123
The engine in the research is a single cylinder DI diesel using the emission reduction techniques such as high boost, high injection pressure and broad range and high quantity of exhaust gas recirculation (EGR). The study especially focuses on the reduction of particulate matter (PM) under the engine operating conditions. In the experiment the authors measured engine performance, exhaust gases and mass of PM by low sulfur fuel such as 3 ppm and low sulfur lubricant oil such as 0.26%. Then the PM components were divided into soluble organic fraction (SOF) and insoluble organic fraction (ISOF) and they were measured at each engine condition. The mass of SOF was measured from the fuel fraction and lubricant oil fraction by gas chromatography. Also each mass of soot fraction and sulfate fraction was measured as components of ISOF. The experiment was conducted at BMEP = 2.0 MPa as full load condition of the engine and changing EGR rate from 0% to 40 %.
Technical Paper

Reexamination of Multiple Fuel Injections for Improving the Thermal Efficiency of a Heavy-Duty Diesel Engine

2013-04-08
2013-01-0909
As a technology required for future commercial heavy-duty diesel engines, this study reexamines the potential of the multiple injection strategy for improving the thermal efficiency while maintaining low engine-out exhaust emissions with a high EGR rate of more than 50% and high boost pressure of 276.3 kPa abs under medium load conditions. The experiments were conducted with a single cylinder research engine. The engine was operated at BMEP of 0.8 MPa at a medium speed. Using multiple injections, the temporal and spatial in-cylinder temperature distribution was changed to investigate the effect on fuel consumption and exhaust emissions. The results showed that the multiple injection strategy combined with higher EGR rate could improve fuel consumption by about 3% due to the reduction of heat loss from the wall.
Technical Paper

Reduction of NOx and PM for a Heavy Duty Diesel Using 50% EGR Rate in Single Cylinder Engine

2010-04-12
2010-01-1120
For reducing NOx emissions, EGR is effective, but an excessive EGR rate causes the deterioration of smoke emission. Here, we have defined the EGR rate before the smoke emission deterioration while the EGR rate is increasing as the limiting EGR rate. In this study, the high rate of EGR is demonstrated to reduce BSNOx. The adapted methods are a high fuel injection pressure such as 200 MPa, a high boost pressure as 451.3 kPa at 2 MPa BMEP, and the air intake port that maintains a high air flow rate so as to achieve low exhaust emissions. Furthermore, for withstanding 2 MPa BMEP of engine load and high boosting, a ductile cast iron (FCD) piston was used. As the final effect, the installations of the new air intake port increased the limiting EGR rate by 5%, and fuel injection pressure of 200 MPa raised the limiting EGR rate by an additional 5%. By the demonstration of increasing boost pressure to 450 kPa from 400 kPa, the limiting EGR rate was achieved to 50%.
Technical Paper

Real-time Analysis of Benzene in Exhaust Gas from Driving Automobiles Using Jet-REMPI Method

2009-11-02
2009-01-2740
Real-time analysis of benzene in automobile exhaust gas was performed using the Jet-REMPI (supersonic jet / resonance enhanced multi-photon ionization) method. Real-time benzene concentration of two diesel trucks and one gasoline vehicle driving in Japanese driving modes were observed under ppm level at 1 s intervals. As a result, it became obvious that there were many differences in their emission tendencies, because of their car types, driving conditions, and catalyst conditions. In two diesel vehicle, benzene emission tendencies were opposite. And, in a gasoline vehicle, emission pattern were different between hot and cold conditions due to the catalyst conditions.
Technical Paper

Real-Time Measuring System for Engine Exhaust Solid Particle Number Emission - Performance and Vehicle Tests

2006-04-03
2006-01-0865
The prototype solid particle counting system (SPCS) has been used to study solid particle emission from gasoline and diesel vehicles. As recommended by the PMP draft proposal, exhaust is diluted by a Constant Volume Sampler (CVS). The SPCS takes the sample from the CVS tunnel. Transient test cycles such as EPA FTP 75, EPA HWFET (EPA Highway Fuel Economy Cycle), and NEDC (New European Driving Cycle) were tested. The repeatability of the instrument was evaluated on the diesel vehicle for three continuous days. The instrument exhibits good repeatability. The differences for the EPA ftp 75, the EPA HWFET, and the NEDC in three continuous tests are ± 3.5%. The instrument is very sensitive as well and detects the driving differences. A large number of solid particles are found during the hard acceleration from both the gasoline and the diesel vehicles. Solid particle emissions decrease quickly at deceleration and when vehicles approach constant speed.
Technical Paper

Predicting Exhaust Emissions in a Glow-Assisted DI Methanol Engine Using a Combustion Model Combined with Full Kinetics

1996-10-01
961935
A numerical model has been developed to predict the formation of NOx and formaldehyde in the combustion and post-combustion zones of a methanol DI engine. For this purpose, a methanol-air mixture model combined with a full kinetics model has been introduced, taking into account 39 species with their 157 related elementary reactions. Through these kinetic simulations, a concept is proposed for optimizing methanol combustion and reducing exhaust emissions.
Technical Paper

Performance and Emission Characteristics of a DI Diesel Engine Operated on Dimethyl Ether Applying EGR with Supercharging

2000-06-19
2000-01-1809
This research investigates engine performance and the possibility of reducing exhaust emissions by using Dimethyl Ether (DME). There are high expectations for DME as a new alternative fuel for diesel engines for heavy-duty vehicles. In this experiment, a single cylinder direct-injection diesel engine with displacement of 1.05 liter and a compression ratio of 18:1 was used as a base engine. Common rail type DME fuel injection equipment for the single cylinder engine experiment was installed, and direct injection in the cylinder of DME was tried. Results indicated that high injection pressure, high swirl ratio, and supercharging using multi-hole injectors are effective for combustion promotion in the DME fueled diesel engine (DME engine). The output of the DME engine using supercharging with an intercooler and EGR was higher than that of a diesel engine. By increasing the EGR rate Nox emission was reduced to about 1/3 that of the diesel engine. Smoke was not completely emitted.
X