Refine Your Search

Topic

null

Affiliation

Search Results

Technical Paper

Visualization Experiment in a Transparent Engine With Pure and Mixed Normal Paraffin Fuels

2004-06-08
2004-01-2018
In the previous study design of two-component normal paraffin fuel was attempted considering the components and blending ratio. Only the thermodynamic analysis of combustion and analysis of emission characteristics were performed to evaluate the design performance. In this study mixture formation behavior and combustion phenomena of pure and mixed n-paraffin fuels were investigated by direct visualization in an AVL engine with bottom view piston. The experiments included laser-illuminated high-speed photography of the fuel injection phase and combustion phase to investigate physical differences. The results obtained for the proposed fuels are compared with the results of conventional diesel fuel. It was found that the two component normal paraffin fuels with similar thermo physical properties have very similar spray development pattern but evaporation rates are different.
Technical Paper

Utilizing FAME as a Cetane Number Improver for a Light-duty Diesel Engine

2014-04-01
2014-01-1392
As the petroleum depletion, some of this demand will probably have to be met by increasing the production of diesel fuels from heavy oil or unconventional oil in the near future. Such fuels may inevitably have a lower cetane number (CN) with a higher concentration of aromatic components. The objective of the present research is to identify the effects of a typical biodiesel fuel as a CN improver for a light-duty diesel engine for passenger cars. Our previous study indicates that methyl oleate (MO), which is an oxygenated fuel representative of major constituents of many biodiesel types, can reduce soot and NOx emissions simultaneously by optimizing performance under exhaust gas recirculation (EGR) when used as a diesel fuel additive. In addition, it was found that MO tends to reduce the ignition delay. We employed a 2.2 L passenger car DI diesel engine complying with the Euro 4 emissions regulation.
Technical Paper

The Performance of a Diesel Engine for Light Duty Truck Using a Jerk Type In-Line DME Injection System

2004-06-08
2004-01-1862
Over the last few years much interest has been shown in Dimethyl Ether (DME) as a new fuel for diesel cycle engines. DME combines the advantages of a high cetane number with soot-free combustion, making it eminently suitable for compression engines. According, however, to past engine test results, the engine output of a DME engine lacking compatibility as a DME injection system, is low in comparison with a diesel engine. Required is development of a DME injection system conforming to DME properties. The purpose of this work is to investigate the feasibility of DME application for a conventional jerk-type in-line injection system that has the actual result of use of a comparatively low lubricity fuel such as methanol.
Technical Paper

The Emission of PAH from a DI Diesel Engine Operating on Fuels and Lubricants with Known PAH Content

1994-03-01
940342
Engine experiments were carried out in order to investigate the mechanisms involved in connection with the emission of lubricant related polyaromatic hydrocarbons (PAH) from a D.I. diesel engine. In the experiments only the mechanisms related to pyrene emissions were investigated, since synthetic fuels and lubricants containing pyrene as the only aromatic compond were used. Particulate matter (PM) and the soluble organic fraction (SOF) of PM as well as PAH emissions were measured for different engine conditions at different levels of pyrene in the lubricant and the fuel. Possible mechanisms of PAH transportation from the lubricant to the exhaust gas are discussed based on the experimental results, as well as the importance of fuel and lubricant to SOF and PAH emissions.
Technical Paper

The Effects of Jatropha-derived Biodiesel on Diesel Engine Combustion and Emission Characteristics

2012-09-10
2012-01-1637
The objective of the present research is to investigate the effects on diesel engine combustion and NOx and PM emission characteristics in case of blending the ordinary diesel fuel with biodiesel in passenger car diesel engines. Firstly, we conducted experiments to identify the combustion and emissions characteristics in a modern diesel engine complying with the EURO 4 emission standard. Then, we developed a numerical simulation model to explain and generalize biodiesel combustion phenomena in detail and generalize emission characteristics. The experimental and simulation results are useful to reduce biodiesel emissions by controlling engine operating and design parameters in the diesel engine. Engine tests were conducted and a mathematical model created to investigate the effects of 40% and 100% methyl oleate modeled fuel representing Jatropha-derived biodiesel on diesel combustion and emission characteristics, over a wide range of passenger car DI diesel engine operating conditions.
Technical Paper

The Effects of Fuel Temperature on a Direct Injection Gasoline Spray in a Constant Volume Chamber

2003-05-19
2003-01-1810
Fuel temperature in the injector of small direct injection gasoline engine is high. On some conditions it is higher than saturated temperature. Over saturated temperature spray characteristics greatly change. In order to predict in-cylinder phenomena accurately, it is important to understand spray behavior and mixture process above saturated temperature. Therefore spray shape, mixture formation process and Sauter mean radius were (SMR) measured in a constant volume chamber. And based on the measurement result initial spray boundary conditions were arranged so that spray characteristics over saturated temperature could be represented by using CFD code KIVA-3[1]. Moreover KIVA-3 code was combined with detailed chemical kinetics code Chemkin II to predict combustion products. [2] Calculated combustion process was validated with visualization of chemiluminescence. As a result, spray shape and penetration length have good agreement with measured ones for each fuel temperature.
Technical Paper

The Control of Diesel Emissions by Supercharging and Varying Fuel-injection Parameters

1992-02-01
920117
A study has been made of an automotive direct injection diesel engine designed to reduce exhaust emissions, particularly NOx and particulates, without performance deterioration. Special emphasis has been placed on air-fuel mixing conditions controlled by the fuel injection rate, the intake swirl ratio, and the intake boost pressure. By means of increasing the injection rate, ignition delay can be shortened enough to improve particulate emissions at retarded injection timings. Enhancing the intake swirl velocity contributes to the reduction of soot emission in spite of the deterioration of NOx emission. Supercharging can favorably enhance diffusion combustion resulting in improved fuel economy for retarded injection timings and reduced emissions. As a result, a good compromise can be achieved between fuel economy and exhaust emissions by increasing the injection rate along with retarding the injection timing. Supercharging was found to be more favorable than swirl enhancement.
Technical Paper

The Cold Flow Performance and the Combustion Characteristics with Ethanol Blended Biodiesel Fuel

2005-10-24
2005-01-3707
The purpose of this study is to improve low-temperature flow-properties of biodiesel fuels (BDF) by blending with ethanol and to analyze the combustion characteristics in a diesel engine fueled with BDF/ethanol blended fuel. Because ethanol has a lower solidifying temperature, higher oxygen content, lower cetane number, and higher volatility than BDF, ethanol blending would have a large effect on cold flow performance, mixture formation, ignition, combustion, and exhaust emissions. The engine experiments in the study were performed with a diesel engine and blends of BDF and ethanol at different blending ratios. The cold flow performance of the blended fuels was evaluated by determining the fuel cloud point. The experimental results show that the ethanol blending lowers the cloud point of the blended fuel and significantly reduces smoke emissions from the engine without deteriorating other emissions or thermal efficiency.
Journal Article

Summary and Progress of the Hydrogen ICE Truck Development Project

2009-06-15
2009-01-1922
A development project for a hydrogen internal combustion engine (ICE) system for trucks supporting Japanese freightage has been promoted as a candidate for use in future vehicles that meet ultra-low emission and anti-global warming targets. This project aims to develop a hydrogen ICE truck that can handle the same freight as existing trucks. The core development technologies for this project are a direct-injection (DI) hydrogen ICE system and a liquid hydrogen tank system which has a liquid hydrogen pump built-in. In the first phase of the project, efforts were made to develop the DI hydrogen ICE system. Over the past three years, the following results have been obtained: A high-pressure hydrogen gas direct injector developed for this project was applied to a single-cylinder hydrogen ICE and the indicated mean effective pressure (IMEP) corresponding to a power output of 147 kW in a 6-cylinder hydrogen ICE was confirmed.
Technical Paper

Study on Regeneration of Diesel Particle Trapper by Electrical Self-Heating Type Filter

1992-02-01
920140
The cordierite filter has been widely studied because of it's inherent, high capacities in the collection efficiency and heat-resistance. During the regeneration process of a cordierite filter, failure of ignition or incomplete burning propagation occurs, and additionally melts or cracks develop sometimes. In this study, the problems stated above are considered from a new standpoint, and a regeneration method that does not strictly depend on accumulated soot quantity is discussed. A filter made of SiC (Silicon carbide) possesses the requisite electric resistance and it's possible to heat it uniformly by using electricity. Accumulated soot can be uniformly incinerated not by burning propagation but by simultaneous ignition and burning of all accumulated soot. Silicon carbide has a higher resistance to heat than cordierite. Therefore, a self-heating filter made of SiC makes it possible to regenerate the filter in a wider range of accumulated soot.
Technical Paper

Study of NOx Emissions Reduction Strategy for a Naturally Aspirated 4-Cylinder Direct Injection Hydrogen ICE

2010-10-25
2010-01-2163
Hydrogen engines are required to provide high thermal efficiency and low nitrogen oxide (NOX) emissions. There are many possible combinations of injection timing, ignition timing, lambda and EGR rate that can be used in a direct-injection system for achieving such performance. In this study, NOX emissions of natural aspirated 4 cylinders engine with management strategies involving the injection timing, ignition timing, lambda and the EGR rate were evaluated under a Japanese JE05 emissions test cycle. Finally, the paper projects the potential of direct injection hydrogen engine for obtaining high output power and attaining low NOX emissions of 0.7 g/kWh under the emission test cycle.
Technical Paper

Study of Knock Control in Small Gasoline Engines by Multi-Dimensional Simulation

2006-11-13
2006-32-0034
To suppress knock in small gasoline engines, the coolant flow of a single-cylinder engine was improved by using two methods: a multi-dimensional knock prediction method combining a Flamelet model with a simple chemical kinetics model, and a method for predicting combustion chamber wall temperature based on a thermal fluid calculation that coupled the engine coolant and the engine structure (engine head, cylinder block, and head gasket). Through these calculations as well as the measurement of wall temperatures and the analysis of combustion by experiments, the effects of wall temperature distribution and consequent unburnt gas temperature distribution on knock onset timing and location were examined. Furthermore, a study was made to develop a method for cooling the head side, which was more effective to suppress knock: the head gasket shape was modified to change the coolant flow and thereby improve the distribution of wall temperatures on the head side.
Journal Article

Study of DME Diesel Engine for Low NOx and CO2 Emission and Development of DME Trucks for Commercial Use

2011-08-30
2011-01-1961
Study of DME diesel engines was conducted to improve fuel consumption and emissions of its. Additionally, DME trucks were built for the promotion and the road tests of these trucks were executed on EFV21 project. In this paper, results of diesel engine tests and DME truck driving tests are presented. As for DME diesel engines, the performance of a DME turbocharged diesel engine with LPL-EGR was evaluated and the influence of the compression ratio was also explored. As for DME trucks, a 100,000km road test was conducted on a DME light duty truck. After the road test, the engine was disassembled for investigation. Furthermore, two DME medium duty trucks have been developed and are now the undergoing practical road testing in each area of two transportation companies in Japan.
Technical Paper

Simulating Exhaust Emissions Characteristics and Their Improvements in a Glow-Assisted DI Methanol Engine Using Combustion Models Combined with Detailed Kinetics

1997-05-01
971598
An experimental and numerical study has been conducted on the emission and reduction of HCHO (formaldehyde) and other pollutants formed in the cylinder of a direct-injection diesel engine fueled by methanol. Engine tests were performed under a variety of intake conditions including throttling, heating, and EGR (exhaust gas recirculation) for the purpose of improving these emissions by changing gas compositions and combustion temperatures in the cylinder. Moreover, a detailed kinetics model was developed and applied to methanol combustion to investigate HCHO formation and the reduction mechanism influenced by associated elementary reactions and in-cylinder mixing.
Technical Paper

SOF Component of Lubricant Oil on Diesel PM in a High Boosted and Cooled EGR Engine

2007-04-16
2007-01-0123
The engine in the research is a single cylinder DI diesel using the emission reduction techniques such as high boost, high injection pressure and broad range and high quantity of exhaust gas recirculation (EGR). The study especially focuses on the reduction of particulate matter (PM) under the engine operating conditions. In the experiment the authors measured engine performance, exhaust gases and mass of PM by low sulfur fuel such as 3 ppm and low sulfur lubricant oil such as 0.26%. Then the PM components were divided into soluble organic fraction (SOF) and insoluble organic fraction (ISOF) and they were measured at each engine condition. The mass of SOF was measured from the fuel fraction and lubricant oil fraction by gas chromatography. Also each mass of soot fraction and sulfate fraction was measured as components of ISOF. The experiment was conducted at BMEP = 2.0 MPa as full load condition of the engine and changing EGR rate from 0% to 40 %.
Technical Paper

Research and Development Program of the Next-generation Environmentally Friendly Vehicles(EFVs) in Japan

2004-03-08
2004-01-0644
The increase in number of automobiles due to its convenience brought serious increases in environmental load. The rate of attainment of environmental standards for nitrogen dioxide (NO2) and suspended particulate matter (SPM) in urban areas is still low in Japan. Diesel vehicles emit the vast majority of air pollutants from exhaust. Therefore, developing emission measures, particularly for diesel vehicles, is an urgent task for addressing air pollution. Furthermore, at the Third Conference of the Parties to the UN Framework Convention on Climate Change (COP 3) held in Kyoto in December 1997, Japan pledged to reduce greenhouse gas emissions to 6 percent below 1990 levels for the first commitment period of 2008 to 2012. To address vehicle emissions, Japan is gradually introducing increasingly strict NOx and particulate matter regulations.
Technical Paper

Reduction of Unburnt Methanol and Formaldehyde Emissions from Methanol Fueled Vehicles-Acceleration of Oxidative Reaction on Catalyst by Pre-Catalyst Installation and Its Heating

1996-02-01
960238
It is well known that during engine cold-start, methanol fueled vehicles have a tendency to emit significant amount of unburnt methanol and formaldehyde, which is an oxidant of methanol The emission behavior and reduction methods of these components are studied in this paper The reduction rate of these unburnt components exceeds 99% when the temperature of a catalyst is enough high However during engine cold-start the oxidative reaction can not begin, and it takes several minutes to warm up the catalyst After the temperature of the catalyst reaches to the light-off temperature it rises steeply and high reduction rates of these components are obtained at the same time Therefore, the catalyst temperature must be raised quickly and effectively in order to realize the proper oxidative reduction of unburnt methanol and formaldehyde emissions during engine cold-start Consequently the effectiveness of installing pre-catalysts was examined in this study Some pre-catalysts (200cm3/piece) were placed after the exhaust manifold Results showed that within 10 minutes of initiating the idling experiment after engine cold-start the pre-catalysts were very effective and decreased emissions of the unburnt components by two thirds Moreover pre-catalysts which were electrically pre-heated with an external heater could more drastically decrease the amount of these components under the same experimental conditions However for such electrical heating to be practical it is necessary to reduce the level of heating energy to as low an amount as possible Therefore two power-saving methods were tried One method consisted of installing a glow plug in the upper stream of the pre-catalyst This method was based on an idea that unburnt components coming in contact with the glow plug are activated and easily oxidized and that they then release thermal energy for quick heating The results showed that this method was effective for reduction (more than 40%) of unburnt methanol but was ineffective for reducing formaldehyde since spot heating caused a balancing of formaldehyde formation/decomposition Therefore another method was examined A small-sized electric heated pre-catalyst(50cm3)was installed in order to heat a full section of the exhaust stream of the catalyst The results showed that this method had a great effect in reducing these harmful substances Moreover, it was demonstrated that this method consumes little energy and is more practical as a means of heating
Technical Paper

Reduction of NOx and PM for a Heavy Duty Diesel Using 50% EGR Rate in Single Cylinder Engine

2010-04-12
2010-01-1120
For reducing NOx emissions, EGR is effective, but an excessive EGR rate causes the deterioration of smoke emission. Here, we have defined the EGR rate before the smoke emission deterioration while the EGR rate is increasing as the limiting EGR rate. In this study, the high rate of EGR is demonstrated to reduce BSNOx. The adapted methods are a high fuel injection pressure such as 200 MPa, a high boost pressure as 451.3 kPa at 2 MPa BMEP, and the air intake port that maintains a high air flow rate so as to achieve low exhaust emissions. Furthermore, for withstanding 2 MPa BMEP of engine load and high boosting, a ductile cast iron (FCD) piston was used. As the final effect, the installations of the new air intake port increased the limiting EGR rate by 5%, and fuel injection pressure of 200 MPa raised the limiting EGR rate by an additional 5%. By the demonstration of increasing boost pressure to 450 kPa from 400 kPa, the limiting EGR rate was achieved to 50%.
Technical Paper

Real-time Analysis of Benzene in Exhaust Gas from Driving Automobiles Using Jet-REMPI Method

2009-11-02
2009-01-2740
Real-time analysis of benzene in automobile exhaust gas was performed using the Jet-REMPI (supersonic jet / resonance enhanced multi-photon ionization) method. Real-time benzene concentration of two diesel trucks and one gasoline vehicle driving in Japanese driving modes were observed under ppm level at 1 s intervals. As a result, it became obvious that there were many differences in their emission tendencies, because of their car types, driving conditions, and catalyst conditions. In two diesel vehicle, benzene emission tendencies were opposite. And, in a gasoline vehicle, emission pattern were different between hot and cold conditions due to the catalyst conditions.
Technical Paper

Real-Time Measuring System for Engine Exhaust Solid Particle Number Emission - Performance and Vehicle Tests

2006-04-03
2006-01-0865
The prototype solid particle counting system (SPCS) has been used to study solid particle emission from gasoline and diesel vehicles. As recommended by the PMP draft proposal, exhaust is diluted by a Constant Volume Sampler (CVS). The SPCS takes the sample from the CVS tunnel. Transient test cycles such as EPA FTP 75, EPA HWFET (EPA Highway Fuel Economy Cycle), and NEDC (New European Driving Cycle) were tested. The repeatability of the instrument was evaluated on the diesel vehicle for three continuous days. The instrument exhibits good repeatability. The differences for the EPA ftp 75, the EPA HWFET, and the NEDC in three continuous tests are ± 3.5%. The instrument is very sensitive as well and detects the driving differences. A large number of solid particles are found during the hard acceleration from both the gasoline and the diesel vehicles. Solid particle emissions decrease quickly at deceleration and when vehicles approach constant speed.
X