Refine Your Search

Topic

Search Results

Technical Paper

Valvetrain System for Exhaust Rebreathing on a Light-Duty Gasoline Compression Ignition (GCI) Engine

2023-10-31
2023-01-1673
The global automotive industry is undergoing a significant transition as battery electric vehicles enter the market and diesel sales decline. It is widely recognized that internal combustion engines (ICE) are needed for transport for years to come, however, demands on fuel efficiency, emissions, cost, and performance are extremely challenging. Gasoline compression ignition (GCI) is one approach to achieving demanding future efficiency and emissions targets. A key technology enabler for GCI is partially premixed, compression ignition (PPCI) combustion, which involves two high-pressure, late, fuel injections during the compression stroke. Both NOx and smoke emissions are greatly reduced relative to diesel engines, and this reduces aftertreatment (AT) requirements significantly. Exhaust rebreathing (RB) is used for robust low-load and cold operation. This is enabled by use of 2-Step, mode switching rocker arms to allow switching between rebreathe and normal combustion modes.
Technical Paper

Understanding Fuel Stratification Effects on Partially Premixed Compression Ignition (PPCI) Combustion and Emissions Behaviors

2019-04-02
2019-01-1145
Fuel stratification effects on the combustion and emissions behaviors for partially premixed compression ignition (PPCI) combustion of a high reactivity gasoline (research octane number of 80) was investigated using the third generation Gasoline Direct-Injection Compression Ignition (Gen3 GDCI) multi-cylinder engine. The PPCI combustion mode was achieved through a double injection strategy. The extent of in-cylinder fuel stratification was tailored by varying the start of second fuel injection timing (SOIsecond) while the first fuel injection event was held constant and occurred during the intake stroke. Based on the experimental results, three combustion characteristic zones were identified in terms of the SOIsecond - CA50 (crank angle at 50% cumulative heat release) relationship: (I) no response zone (HCCI-like combustion); (II) negative CA50 slope zone: (early PPCI mode); and (III) positive CA50 slope zone (late PPCI mode).
Technical Paper

Two-Step Variable Valve Actuation for Fuel Economy, Emissions, and Performance

2003-03-03
2003-01-0029
Variable-Valve Actuation (VVA) provides improvements in engine efficiency, emissions, and performance by changing the valve lift and timing as a function of engine operating conditions. Two-Step VVA systems utilize two discrete valve-lift profiles and may be combined with continuously variable cam phasing. Two-Step VVA systems are relatively simple, low cost and easy to package on new and existing engines, and therefore, are attractive to engine manufacturers. The objective of this work was to optimize Two-Step system design and operation for maximum system benefits. An Early-Intake-Valve-Closing (EIVC) strategy was selected for warmed-up operating conditions, and a Late-Intake-Valve-Opening (LIVO) strategy was selected for the cold start. Engine modeling tools were used to fundamentally understand the thermodynamic and fluid mechanical processes involved.
Technical Paper

Transient Control of Thermal and EGR Systems for Third Generation GDCI Multi-Cylinder Engine

2018-04-03
2018-01-0902
A third generation Gasoline Direct Injection Compression Ignition (GDCI) engine has been designed and built. The engine is intended to meet stringent US Tier 3 emissions standards with diesel-like fuel efficiency. While nearly every aspect of the engine design has been improved over the previous second generation engine, this paper is primarily concerned with two of the most critical subsystems - the thermal management and EGR systems. These are especially important because gasoline compression ignition combustion is sensitive to intake gas temperature and exhaust gas dilution. Both parameters may deviate from steady state targets during transients. The quality of combustion control during transient vehicle operation is limited by significant response delay in both the thermal management and EGR systems. The intake air coolers must be sized for sufficient heat transfer capacity under peak load operating conditions, which results in coolers having significant thermal inertia.
Technical Paper

Spray-Wall Dynamics of High-Pressure Impinging Combustion

2019-01-15
2019-01-0067
The fuel spray impingement on the piston head and/or chamber often occurs in compact IC engines. The impingement plays one of the key roles in combustion because it affects the air-fuel mixing process. In this study, the impinged combustion has been experimentally investigated to understand the mechanism and dynamics of flame-wall interaction. The experiments were performed in a constant volume combustion chamber over a wide range of ambient conditions. The ambient temperature was varied from 800 K to 1000 K and ambient gas oxygen was varied from 15% to 21%. Diesel fuel was injected with an injection pressure of 150 MPa into ambient gas at a density of 22.8 kg/m3. The natural luminosity technique was applied in the experiments to explore the impinged combustion process. High-speed images were taken using a high-speed camera from two different views (bottom and side). An in-house Matlab program was used to post-process the images.
Technical Paper

Simulation-Based Engine Calibration: Tools, Techniques, and Applications

2004-03-08
2004-01-1264
Calibration of engine management systems requires considerable engineering resources during the development of modern engines. Traditional calibration methods use a combination of engine dynamometer and vehicle testing, but pressure to reduce powertrain development cost and time is driving development of more advanced calibration techniques. In addition, future engines will feature new technology, such as variable valve actuation, that is necessary to improve fuel economy, performance, and emissions. This introduces a greater level of system complexity and greatly increases test requirements to achieve successful calibrations. To address these problems, new simulation tools and procedures have been developed within Delphi to rapidly generate optimized calibration maps. The objective of the work is to reduce calibration effort while fully realizing the potential benefit from advanced engine technology.
Journal Article

Second Generation GDCI Multi-Cylinder Engine for High Fuel Efficiency and US Tier 3 Emissions

2016-04-05
2016-01-0760
The second generation 1.8L Gasoline Direct Injection Compression Ignition (GDCI) engine was built and tested using RON91 gasoline. The engine is intended to meet stringent US Tier 3 emissions standards with diesel-like fuel efficiency. The engine utilizes a fulltime, partially premixed combustion process without combustion mode switching. The second generation engine features a pentroof combustion chamber, 400 bar central-mounted injector, 15:1 compression ratio, and low swirl and squish. Improvements were made to all engine subsystems including fuel injection, valve train, thermal management, piston and ring pack, lubrication, EGR, boost, and aftertreatment. Low firing friction was a major engine design objective. Preliminary test results indicated good improvement in brake specific fuel consumption (BSFC) over the first generation GDCI engines, while meeting targets for engine out emissions, combustion noise and stability.
Journal Article

Pathway to 50% Brake Thermal Efficiency Using Gasoline Direct Injection Compression Ignition

2019-04-02
2019-01-1154
Continued improvement in the combustion process of internal combustion engines is necessary to reduce fuel consumption, CO2 emissions, and criteria emissions for automotive transportation around the world. In this paper, test results for the Gen3X Gasoline Direct Injection Compression Ignition (GDCI) engine are presented. The engine is a 2.2L, four-cylinder, double overhead cam engine with compression ratio ~17. It features a “wetless” combustion system with a high-pressure direct injection fuel system. At low load, exhaust rebreathing and increased intake air temperature were used to promote autoignition and elevate exhaust temperatures to maintain high catalyst conversion efficiency. For medium-to-high loads, a new GDCI-diffusion combustion strategy was combined with advanced single-stage turbocharging to produce excellent low-end torque and power. Time-to-torque (TT) simulations indicated 90% load response in less than 1.5 seconds without a supercharger.
Journal Article

Operation of a Gasoline Direct Injection Compression Ignition Engine on Naphtha and E10 Gasoline Fuels

2016-04-05
2016-01-0759
Gasoline Direct Injection Compression Ignition (GDCI) is a partially premixed low temperature combustion process that has demonstrated high fuel efficiency with full engine load range capabilities, while emitting very low levels of particulate matter (PM) and oxides of nitrogen (NOx). In the current work, a comparison of engine combustion, performance, and emissions has been made among E10 gasoline and several full-boiling range naphtha fuels on a Gen 2 single-cylinder GDCI engine with compression ratio of 15:1. Initial results with naphtha demonstrated improved combustion and efficiency at low loads. With naphtha fuel, hydrocarbon and carbon monoxide emissions were generally reduced at low loads but tended to be higher at mid-loads despite the increased fuel reactivity. At higher loads, naphtha required less boost pressure compared to gasoline, however, up to 20% additional EGR was required to maintain combustion phasing.
Technical Paper

Numerical Evaluation of Gasoline Compression Ignition at Cold Conditions in a Heavy-Duty Diesel Engine

2020-04-14
2020-01-0778
Achieving robust ignitability for compression ignition of diesel engines at cold conditions is traditionally challenging due to insufficient fuel vaporization, heavy wall impingement, and thick wall films. Gasoline compression ignition (GCI) has shown the potential to offer an enhanced NOx-particulate matter tradeoff with diesel-like fuel efficiency, but it is unknown how the volatility and reactivity of the fuel will affect ignition under very cold conditions. Therefore, it is important to investigate the impact of fuel physical and chemical properties on ignition under pressures and temperatures relevant to practical engine operating conditions during cold weather. In this paper, 0-D and 3-D computational fluid dynamics (CFD) simulations of GCI combustion at cold conditions were performed.
Journal Article

Gasoline Fuels Assessment for Delphi’s Second Generation Gasoline Direct-Injection Compression Ignition (GDCI) Multi-Cylinder Engine

2017-03-28
2017-01-0743
Fuel efficiency and emission performance sensitivity to fuel reactivity was examined using Delphi’s second-generation Gasoline Direct-Injection Compression Ignition (Gen 2.0 GDCI) multi-cylinder engine. The study was designed to compare a US market gasoline (RON 92 E10) to a higher reactivity gasoline (RON 80) at four operating conditions ranging from light load of 800 rpm / 2.0 bar gross indicated-mean-effective pressure (IMEPg) to medium load of 2000 rpm / 10.0 bar IMEPg. The experimental assessment indicated that both gasolines could achieve good performance and Tier 3 emission targets at each of the four operating conditions. Relative to the RON 92 E10 gasoline, better fuel consumption and engine-out emissions performance was achieved when using RON 80 gasoline; consistent with our previously reported single-cylinder engine research [1].
Journal Article

Gasoline Direct Injection Compression Ignition (GDCI) - Diesel-like Efficiency with Low CO2 Emissions

2011-04-12
2011-01-1386
A single-cylinder engine was used to study the potential of a high-efficiency combustion concept called gasoline direct-injection compression-ignition (GDCI). Low temperature combustion was achieved using multiple injections, intake boost, and moderate EGR to reduce engine-out NOx and PM emissions engine for stringent emissions standards. This combustion strategy benefits from the relatively long ignition delay and high volatility of regular unleaded gasoline fuel. Tests were conducted at 6 bar IMEP - 1500 rpm using various injection strategies with low-to-moderate injection pressure. Results showed that triple injection GDCI achieved about 8 percent greater indicated thermal efficiency and about 14 percent lower specific CO2 emissions relative to diesel baseline tests on the same engine. Heat release rates and combustion noise could be controlled with a multiple-late injection strategy for controlled fuel-air stratification. Estimated heat losses were significantly reduced.
Journal Article

GDCI Multi-Cylinder Engine for High Fuel Efficiency and Low Emissions

2015-04-14
2015-01-0834
A 1.8L Gasoline Direct Injection Compression Ignition (GDCI) engine was tested over a wide range of engine speeds and loads using RON91 gasoline. The engine was operated with a new partially premixed combustion process without combustion mode switching. Injection parameters were used to control mixture stratification and combustion phasing using a multiple-late injection strategy with GDi-like injection pressures. At idle and low loads, rebreathing of hot exhaust gases provided stable compression ignition with very low engine-out NOx and PM emissions. Rebreathing enabled reduced boost pressure, while increasing exhaust temperatures greatly. Hydrocarbon and carbon monoxide emissions after the oxidation catalyst were very low. Brake specific fuel consumption (BSFC) of 267 g/kWh was measured at the 2000 rpm-2bar BMEP global test point.
Technical Paper

Fuel Injection System for Opposed-Piston Gasoline Compression-Ignited (OP-GCI) Engines

2019-04-02
2019-01-0287
Opposed-piston engines have been in production since before the 1930’s because of their inherent low heat losses and high thermal efficiency. Now, opposed-piston gasoline compression ignition (OP-GCI) engines are being developed for automotive transportation with stringent emissions targets. Due to the opposed-piston architecture and the absence of a cylinder head, fuel injection requirements and packaging are significantly different than conventional 4-stroke engines with central-mounted injectors. The injection process and spray characteristics are fundamental to achieving a successful combustion system with high efficiency, low emissions, and low combustion noise. In this paper, the fuel injection system for the Achates 2.7L, 3-cylinder OP-GCI engine is described. The fuel system was designed for 1800 bar maximum fuel pressure with two injectors mounted diametrically opposed in each cylinder.
Technical Paper

Evolution of Light-Duty Gasoline Compression Ignition (LD-GCI) for High Efficiency and US Tier3- Bin30 Emissions

2024-04-09
2024-01-2092
It is widely recognized that internal combustion engines (ICE) are needed for transport worldwide for years to come, however, demands on ICE fuel efficiency, emissions, cost, and performance are extremely challenging. Gasoline compression ignition (GCI) is one approach to achieve demanding efficiency and emissions targets. At Aramco Research Center-Detroit, an advanced, multi-cylinder GCI engine was designed and built using the latest combustion system, engine controls, and lean aftertreatment. The combustion system uses Aramco’s PPCI-diffusion process for ultra-low NOx and smoke. A P2 48V mild hybrid system was integrated on the engine for braking energy recovery and improved cold starts. For robust low-load operation, a 2-step valvetrain system was used for exhaust rebreathing. Test data showed that part-load fuel consumption was reduced 7 to 10 percent relative to a competitive 2.0L European diesel engine.
Journal Article

Evaluation of Hybrid, Electric and Fuel Cell Powertrain Solutions for Class 6-7 Medium Heavy-Duty Vehicles

2021-04-06
2021-01-0723
Electrification of heavy-duty trucks has received significant attention in the past year as a result of future regulations in some states. For example, California will require a certain percentage of tractor trailers, delivery trucks and vans sold to be zero emission by 2035. However, the relatively low energy density of batteries in comparison to diesel fuel, as well as the operating profiles of heavy-duty trucks, make the application of electrified powertrain in these applications more challenging. Heavy-duty vehicles can be broadly classified into two main categories; long-haul tractors and vocational vehicles. Long-haul tractors offer limited benefit from electrification due to the majority of operation occurring at constant cruise speeds, long range requirements and the high efficiency provided by the diesel engine.
Technical Paper

Evaluation of Fast Warm-Up Strategies for a Light-Duty Gasoline Compression Ignition (GCI) Engine

2020-04-14
2020-01-0317
Increasingly stringent emissions regulations in automotive applications are driving advancements in after-treatment technology and emissions control strategies. Fast warm-up of the after-treatment system during the engine cold-start is essential to meet future emissions targets. In this study, a range of strategies were evaluated on a 2.2L, four cylinder, light-duty Gasoline Compression Ignition (GCI) engine with geometric compression ratio 17. The GCI engine has a single stage turbocharger and low-pressure exhaust gas recirculation (EGR) with EGR cooler bypass. For cold-start assist, the engine is equipped with a 2.5kW electric intake air heater. The aftertreatment system is comprised of an oxidation catalyst, followed by a particulate filter and an SCR catalyst. A GT-Power model of a light-duty diesel engine was modified to represent the GCI engine system setup for catalyst light-off strategies evaluations.
Technical Paper

Evaluation of 48V and High Voltage Parallel Hybrid Diesel Powertrain Architectures for Class 6-7 Medium Heavy-Duty Vehicles

2021-04-06
2021-01-0720
Electrification of heavy-duty trucks has received significant attention in the past year as a result of future regulations in some states. For example, California will require a certain percentage of tractor trailers, delivery trucks and vans sold to be zero emission by 2035. However, the relatively low energy density of batteries in comparison to diesel fuel, as well as the operating profiles of heavy-duty trucks, make the application of electrified powertrain in these applications more challenging. Heavy-duty vehicles can be broadly classified into two main categories; long-haul tractors and vocational vehicles. Long-haul tractors offer limited benefit from electrification due to the majority of operation occurring at constant cruise speeds, long range requirements and the high efficiency provided by the diesel engine.
Journal Article

Effects of Fuel Type on Dual SCR Aftertreatment for Lean NOx Reduction

2009-11-02
2009-01-2818
Global demand for alternative fuels to combat rising energy costs has sparked a renewed interest in catalysts that can effectively remediate NOx emissions resulting from combustion of a range of HC based fuels. Because many of these new engine technologies rely on lean operating environments to produce efficient power, the resulting emissions are also present in a lean atmosphere. While HCs are easily controlled in such environments, achieving high NOx conversion to N2 has continued to elude fully satisfactory solution. Until recently, most approaches have relied on catalysts with precious metals to either store NOx and subsequently release it as N2 under rich conditions, or use NH3 SCR catalysts with urea injection to reduce NOx under lean conditions. However, new improvements in Ag based technologies also look very promising for NOx reduction in lean environments.
Technical Paper

Effect of Fuel Temperature on the Performance of a Heavy-Duty Diesel Injector Operating with Gasoline

2021-04-06
2021-01-0547
In this last decade, non-destructive X-ray measurement techniques have provided unique insights into the internal surface and flow characteristics of automotive injectors. This has in turn contributed to enhancing the accuracy of Computational Fluid Dynamics (CFD) models of these critical injection system components. By employing realistic injector geometries in CFD simulations, designers and modelers have identified ways to modify the injectors’ design to improve their performance. In recent work, the authors investigated the occurrence of cavitation in a heavy-duty multi-hole diesel injector operating with a high-volatility gasoline-like fuel for gasoline compression ignition applications. They proposed a comprehensive numerical study in which the original diesel injector design would be modified with the goal of suppressing the in-nozzle cavitation that occurs when gasoline fuels are used.
X