Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Vehicle Modeling and Evaluation of the Engine Options in Conventional and Mild-Hybrid Powertrain

2013-04-08
2013-01-1449
The focus of this paper is on developing, modeling and simulation framework for a bias free comparison of different engine concepts in a conventional and hybrid configuration. The first unique contribution of this paper is in the development of a shift logic algorithm that allows tailoring the shift schedule to unique engine characteristics in a consistent manner. The shift schedule is intentionally generated in a generic manner by using identical set of rules for all engines. Therefore, the methodology allows a fair comparison of different engine concepts, while taking into account the individual features of the engine i.e. speed range, efficiency and maximum performance. The latter establishes a baseline for the subsequent study of hybrid configurations. The second unique contribution is the hybrid strategy optimization algorithm, also tailored to a particular engine configuration.
Technical Paper

Using Neural Networks to Compensate Altitude Effects on the Air Flow Rate in Variable Valve Timing Engines

2005-04-11
2005-01-0066
An accurate air flow rate model is critical for high-quality air-fuel ratio control in Spark-Ignition engines using a Three-Way-Catalyst. Emerging Variable Valve Timing technology complicates cylinder air charge estimation by increasing the number of independent variables. In our previous study (SAE 2004-01-3054), an Artificial Neural Network (ANN) has been used successfully to represent the air flow rate as a function of four independent variables: intake camshaft position, exhaust camshaft position, engine speed and intake manifold pressure. However, in more general terms the air flow rate also depends on ambient temperature and pressure, the latter being largely a function of altitude. With arbitrary cam phasing combinations, the ambient pressure effects in particular can be very complex. In this study, we propose using a separate neural network to compensate the effects of altitude on the air flow rate.
Technical Paper

Using Artificial Neural Networks for Representing the Air Flow Rate through a 2.4 Liter VVT Engine

2004-10-25
2004-01-3054
The emerging Variable Valve Timing (VVT) technology complicates the estimation of air flow rate because both intake and exhaust valve timings significantly affect engine's gas exchange and air flow rate. In this paper, we propose to use Artificial Neural Networks (ANN) to model the air flow rate through a 2.4 liter VVT engine with independent intake and exhaust camshaft phasers. The procedure for selecting the network architecture and size is combined with the appropriate training methodology to maximize accuracy and prevent overfitting. After completing the ANN training based on a large set of dynamometer test data, the multi-layer feedforward network demonstrates the ability to represent air flow rate accurately over a wide range of operating conditions. The ANN model is implemented in a vehicle with the same 2.4 L engine using a Rapid Prototype Controller.
Technical Paper

Two-stage Fuel Direct Injection in a Diesel Fuelled HCCI Engine

2007-07-23
2007-01-1880
Two-stage fuel direct injection (DI) has the potential to expand the operating region and control the auto-ignition timing in a Diesel fuelled homogeneous charge compression ignition (HCCI) engine. In this work, to investigate the dual-injection HCCI combustion, a stochastic reactor model, based on a probability density function (PDF) approach, is utilized. A new wall-impingement sub-model is incorporated into the stochastic spray model for direct injection. The model is then validated against measurements for combustion parameters and emissions carried out on a four stroke HCCI engine. The initial results of our numerical simulation reveal that the two-stage injection is capable of triggering the charge ignition on account of locally rich fuel parcels under certain operating conditions, and consequently extending the HCCI operating range.
Technical Paper

Turbulence Intensity Calculation from Cylinder Pressure Data in a High Degree of Freedom Spark-Ignition Engine

2010-04-12
2010-01-0175
The number of control actuators available on spark-ignition engines is rapidly increasing to meet demand for improved fuel economy and reduced exhaust emissions. The added complexity greatly complicates control strategy development because there can be a wide range of potential actuator settings at each engine operating condition, and map-based actuator calibration becomes challenging as the number of control degrees of freedom expand significantly. Many engine actuators, such as variable valve actuation and flow control valves, directly influence in-cylinder combustion through changes in gas exchange, mixture preparation, and charge motion. The addition of these types of actuators makes it difficult to predict the influences of individual actuator positioning on in-cylinder combustion without substantial experimental complexity.
Journal Article

Transient Power Optimization of an Organic Rankine Cycle Waste Heat Recovery System for Heavy-Duty Diesel Engine Applications

2017-03-28
2017-01-0133
This paper presents the transient power optimization of an organic Rankine cycle waste heat recovery (ORC-WHR) system operating on a heavy-duty diesel (HDD). The optimization process is carried on an experimentally validated, physics-based, high fidelity ORC-WHR model, which consists of parallel tail pipe and EGR evaporators, a high pressure working fluid pump, a turbine expander, etc. Three different ORC-WHR mixed vapor temperature (MVT) operational strategies are evaluated to optimize the ORC system net power: (i) constant MVT; (ii) constant superheat temperature; (iii) fuzzy logic superheat temperature based on waste power level. Transient engine conditions are considered in the optimization. Optimization results reveal that adaptation of the vapor temperature setpoint based on evaporation pressure strategy (ii) provides 1.1% mean net power (MNP) improvement relative to a fixed setpoint strategy (i).
Technical Paper

Transient Diesel Emissions: Analysis of Engine Operation During a Tip-In

2006-04-03
2006-01-1151
This study investigates the impact of transient engine operation on the emissions formed during a tip-in procedure. A medium-duty production V-8 diesel engine is used to conduct experiments in which the rate of pedal position change is varied. Highly-dynamic emissions instrumentation is implemented to provide real-time measurement of NOx and particulate. Engine subsystems are analyzed to understand their role in emissions formation. As the rate of pedal position change increases, the emissions of NOx and particulates are affected dramatically. An instantaneous load increase was found to produce peak NOx values 1.8 times higher and peak particulate concentrations an order of magnitude above levels corresponding to a five-second ramp-up. The results provide insight into relationship between driver aggressiveness and diesel emissions applicable to development of drive-by-wire systems. In addition, they provide direct guidance for devising low-emission strategies for hybrid vehicles.
Technical Paper

Thermal Characterization of Combustion Chamber Deposits on the HCCI Engine Piston and Cylinder Head Using Instantaneous Temperature Measurements

2009-04-20
2009-01-0668
Extending the operating range of the gasoline HCCI engine is essential for achieving desired fuel economy improvements at the vehicle level, and it requires deep understanding of the thermal conditions in the cylinder. Combustion chamber deposits (CCD) have been previously shown to have direct impact on near-wall phenomena and burn rates in the HCCI engine. Hence, the objectives of this work are to characterize thermal properties of deposits in a gasoline HCCI engine and provide foundation for understanding the nature of their impact on autoignition and combustion. The investigation was performed using a single-cylinder engine with re-induction of exhaust instrumented with fast-response thermocouples on the piston top and the cylinder head surface. The measured instantaneous temperature profiles changed as the deposits grew on top of the hot-junctions.
Technical Paper

The Potential of the Variable Stroke Spark-Ignition Engine

1997-02-24
970067
A comprehensive quasi-dimensional computer simulation of the spark-ignition (SI) engine was used to explore part-load, fuel economy benefits of the Variable Stroke Engine (VSE) compared to the conventional throttled engine. First it was shown that varying stroke can replace conventional throttling to control engine load, without changing the engine characteristics. Subsequently, the effects of varying stroke on turbulence, burn rate, heat transfer, and pumping and friction losses were revealed. Finally these relationships were used to explain the behavior of the VSE as stroke is reduced. Under part load operation, it was shown that the VSE concept can improve brake specific fuel consumption by 18% to 21% for speeds ranging from 1500 to 3000 rpm. Further, at part load, NOx was reduced by up to 33%. Overall, this study provides insight into changes in processes within and outside the combustion chamber that cause the benefits and limitations of the VSE concept.
Technical Paper

The Fuel Economy Improvement through the Knock Margin Expansion in a Turbocharged Gasoline Direct Injection Engine

2018-09-10
2018-01-1671
Knocking combustion limits the downsized gasoline engines’ potential for improvement with regard to fuel economy. The high in-cylinder pressure and temperature caused by the adaptation of a turbocharger aggravates the tendency of the end-gas to autoignite. Thus, the knocking combustion does not allow for further advancing of the combustion phase. In this research, the effects of the ignition and valve timings on knocking combustion were investigated under steady-state conditions. Moreover, the optimal ignition and valve timings for the transient operations were derived with the aim of a greater fuel economy improvement, based on the steady-state analysis. A 2.0 liter turbocharged gasoline direct injection engine with continuously variable valve timing (CVVT), was utilized for this experiment. 2, 10, and 18 bar brake mean effective pressure (BMEP) load conditions were used to represent the low, medium, and high load operations, respectively.
Technical Paper

The Effects of Two-Stage Fuel Injection on Dimethyl-ether (DME) Homogeneous Charge Compression Ignition Engine Combustion

2009-09-13
2009-24-0104
Two-stage injection strategy was studied in dimethyl-ether homogeneous charge compression ignition engine combustion. An early direct injection, main injection, was applied to form a premixed charge followed by the second injection after the start of heat release. Experiments were carried out in a single-cylinder direct-injection diesel engine equipped with a common-rail injection system, and the combustion performance and exhaust emissions were tested with the various second injection timings and quantities. Engine speed was 1200 rpm, and the load was fixed at 0.2 MPa IMEP. Main injection timing for homogeneous mixture was fixed at −80 CAD, and the fuel quantity was adjusted to the fixed load. Second injection quantity was varied from 1 to 5 mg, and the timing was selected according to the heat release rate of the HCCI combustion without second injection.
Technical Paper

The Effects of Spark Timing and Equivalence Ratio on Spark-Ignition Linear Engine Operation with Liquefied Petroleum Gas

2012-04-16
2012-01-0424
A prototype of a small, spark-ignition free-piston engine combined with a linear alternator was designed to produce electric power for portable usage. It has a bore size of 25 mm and maximum stroke of 22 mm. The engine was fueled with liquefied petroleum gas consisting of 98% propane. The electric power generated by the linear alternator is a function of the piston dynamics and the electric conductance. Therefore, the purpose of current research is to investigate the effects of the basic engine controlling parameters such as the equivalence ratio of the mixture and the spark timing on the piston dynamics and study the relationship with the electric power generation performance. The equivalence ratio of the mixture was varied from 1.0 to 1.72, while the spark timing was varied at 3, 4, and 5 mm away from the maximum top dead center. Operating characteristics, namely, indicated mean effective pressure, electric power output, operating frequency and piston stroke were analyzed.
Technical Paper

The Effects of Pilot Injection on Combustion in Dimethyl-ether (DME) Direct Injection Compression Ignition Engine

2007-09-16
2007-24-0118
Dimethyl-ether combustion with pilot injection was investigated in a single cylinder direct injection diesel engine equipped with a common-rail injection system. Combustion characteristics and emissions were tested with dimethyl-ether and compared with diesel fuel. The main injection timing was fixed to have the best timings for maximum power output. The total injected fuel mass corresponded to a low heating value of 405 joules per cycle at 800 rpm. The fuel quantity and the injection timing of the pilot injection were varied from 8 to 20% of the total injected mass and from 50 to 10 crank angle degrees before the main injection timing, respectively. Ignition delay decreased with pilot injection. The effects of pilot injection were less significant with DME combustion than with diesel. Pilot injection caused the main combustion to increase in intensity resulting in decreased emissions of hydrocarbons, carbon monoxide and particulate matter.
Technical Paper

The Effect of Swirl Ratio and Fuel Injection Parameters on CO Emission and Fuel Conversion Efficiency for High-Dilution, Low-Temperature Combustion in an Automotive Diesel Engine

2006-04-03
2006-01-0197
Engine-out CO emission and fuel conversion efficiency were measured in a highly-dilute, low-temperature diesel combustion regime over a swirl ratio range of 1.44-7.12 and a wide range of injection timing. At fixed injection timing, an optimal swirl ratio for minimum CO emission and fuel consumption was found. At fixed swirl ratio, CO emission and fuel consumption generally decreased as injection timing was advanced. Moreover, a sudden decrease in CO emission was observed at early injection timings. Multi-dimensional numerical simulations, pressure-based measurements of ignition delay and apparent heat release, estimates of peak flame temperature, imaging of natural combustion luminosity and spray/wall interactions, and Laser Doppler Velocimeter (LDV) measurements of in-cylinder turbulence levels are employed to clarify the sources of the observed behavior.
Technical Paper

The Effect of LPG Composition on Combustion and Performance in a DME-LPG Dual-fuel HCCI Engine

2010-04-12
2010-01-0336
The effect of the composition of propane (C₃H₈) and butane (C₄H₁₀) in liquefied petroleum gas (LPG) was investigated in a dual-fuel HCCI engine fueled with di-methyl ether (DME) and LPG. The composition of LPG affects DME-LPG dual fuel HCCI combustion due to the difference in the physical properties of propane that and butane such as octane number, auto-ignition temperature and heat of vaporization. DME was injected directly into the cylinder at various injection timing from 160 to 350 crank angle degrees (CAD). LPG was injected at the intake port with a fixed injection timing at 20 CAD. It was found that power output was increased with propane ratio. This gain in power output resulted from increased expansion work due to the better anti-knock properties of propane. However, higher propane ratio made combustion efficiency decrease because of the suppression in low temperature reaction of DME which determines heat release amount of high temperature reaction.
Technical Paper

The Effect of Injection Location of DME and LPG in a Dual Fuel HCCI Engine

2009-06-15
2009-01-1847
Dimethyl ether (DME) as a high cetane number fuel and liquefied petroleum gas (LPG) as a high octane number fuel were supplied together to evaluate the controllability of combustion phase and improvement of power and exhaust emission in homogeneous charge compression ignition (HCCI) engine. Each fuel was injected at the intake port and in the cylinder separately during the same cycle, i.e., DME in the cylinder and LPG at the intake port, or vice versa. Direct injection timing was varied from 200 to 340 crank angle degree (CAD) while port injection timing was fixed at 20 CAD. In general, the experimental results showed that DME direct injection with LPG port injection was the better way to increase the IMEP and reduce emissions. The direct injection timing of high cetane number fuel was important to control the auto-ignition timing because the auto-ignition was occurred at proper area, where the air and high cetane number fuel were well mixed.
Technical Paper

The Effect of Engine Parameters on In-Cylinder Pressure Reconstruction from Vibration Signals Based on a DNN Model in CNG-Diesel Dual-Fuel Engine

2023-04-11
2023-01-0861
In marine or stationary engines, consistent engine performance must be guaranteed for long-haul operations. A dual-fuel combustion strategy was used to reduce the emissions of particulates and nitrogen oxides in marine engines. However, in this case, the combustion stability was highly affected by environmental factors. To ensure consistent engine performance, the in-cylinder pressure measured by piezoelectric pressure sensors is generally measured to analyze combustion characteristics. However, the vulnerability to thermal drift and breakage of sensors leads to additional maintenance costs. Therefore, an indirect measurement via a reconstruction model of the in-cylinder pressure from engine block vibrations was developed. The in-cylinder pressure variation is directly related to the block vibration; however, numerous noise sources exist (such as, valve impact, piston slap, and air flowage).
Technical Paper

The Dual-Fueled Homogeneous Charge Compression Ignition Engine Using Liquefied Petroleum Gas and Di-methyl Ether

2007-08-05
2007-01-3619
The combustion, knock characteristics and exhaust emissions in an engine were investigated under homogeneous charge compression ignition operation fueled with liquefied petroleum gas with regard to variable valve timing and the addition of di-methyl ether. Liquefied petroleum gas was injected at an intake port as the main fuel in a liquid phase using a liquefied injection system, while a small amount of di-methyl ether was also injected directly into the cylinder during the intake stroke as an ignition promoter. Different intake valve timings and fuel injection amount were tested in order to identify their effects on exhaust emissions, combustion and knock characteristics. The optimal intake valve open timing for the maximum indicated mean effective pressure was retarded as the λTOTAL was decreased. The start of combustion was affected by the intake valve open timing and the mixture strength (λTOTAL) due to the volumetric efficiency and latent heat of vaporization.
Technical Paper

Studying the Influence of Direct Injection on PCCI Combustion and Emissions at Engine Idle Condition Using Two Dimensional CFD and Stochastic Reactor Model

2008-04-14
2008-01-0021
A detailed chemical model was implemented in the KIVA-3V two dimensional CFD code to investigate the effects of the spray cone angle and injection timing on the PCCI combustion process and emissions in an optical research diesel engine. A detailed chemical model for Primary Reference Fuel (PRF) consisting of 157 species and 1552 reactions was used to simulate diesel fuel chemistry. The model validation shows good agreement between the predicted and measured pressure and emissions data in the selected cases with various spray angles and injection timings. If the injection is retarded to -50° ATDC, the spray impingement at the edge of the piston corner with 100° injection angle was shown to enhance the mixing of air and fuel. The minimum fuel loss and more widely distributed fuel vapor contribute to improving combustion efficiency and lowering uHC and CO emissions in the engine idle condition.
Technical Paper

Spray and Combustion of Diesel Fuel under Simulated Cold-Start Conditions at Various Ambient Temperatures

2017-09-04
2017-24-0069
The spray and combustion of diesel fuel were investigated to provide a better understanding of the evaporation and combustion process under the simulated cold-start condition of a diesel engine. The experiment was conducted in a constant volume combustion chamber and the engine cranking period was selected as the target ambient condition. Mie scattering and shadowgraph techniques were used to visualize the liquid- and vapor-phase of the fuel under evaporating non-combustion conditions (oxygen concentration=0%). In-chamber pressure and direct flame visualization were acquired for spray combustion conditions (oxygen concentration=21%). The fuel was injected at an injection pressure of 30 MPa, which is the typical pressure during the cranking period.
X