Refine Your Search

Topic

Author

Affiliation

Search Results

Viewing 1 to 20 of 11031
Technical Paper

“Understanding Diesel Engine Lubrication at Low Temperature”

1990-10-01
902177
Oil pumpability in passenger car gasoline engines was well-characterized by an ASTM program and by individual researchers in the 1970's and early 1980's. Oil pumpability in diesel engines however, was not investigated to any significant extent until the mid-1980's. This study was initiated to define the performance of several commercial viscosity modifiers in different formulations containing 3 detergent-inhibitor (DI) additive packages and 4 basestock types. The test oils were run at -18°C (0°F) in a Cummins NTC-400 diesel engine. The results, when statistically analyzed, indicated that a new, second generation olefin copolymer (OCP) viscosity modifier had better performance than a first generation OCP and, furthermore, had performance equal to a polymethacrylate (PMA) viscosity modifier. The analysis also showed that one DI/base stock combination had a significant effect on performance.
Technical Paper

“TFC/IW in 1982”

1982-02-01
820301
TFC/IW, total fuel consumption divided by inertia weight is reported with other engineering variables for recent EPA data for industry passenger cars and truck. TFC/IW is used in comparisons between gasoline and diesel engines, 49 States and California, passenger cars and trucks. The California fuel economy penalty due to more stringent emissions standards is discussed. The relationship between TFC/IW and ton miles per gallon is shown. Special attention is focused on 4 cylinder gasoline powered vehicles in 49 States passenger car fleet. The use of TFC/IW to answer the question, ‘What Changed?’ when comparing the fuel economies of two fleets is described.
Technical Paper

“Seizure-Delay” Method for Determining the Seizure Protection of EP Lubricants

1939-01-01
390146
IT does not yet seem to be recognized fully that it is the local temperature at the surface of contact and not the local specific pressure that chiefly determines the occurrence of seizure under extreme-pressure-lubrication conditions. This local temperature is the result of the temperature level of the parts lubricated, considered as a whole (“bulk” temperature) and of a superimposed instantaneous temperature rise (temperature “flash”) which is localized in the surface of contact. It appears typical for extreme-pressure-lubrication conditions, as met in gear practice, that the temperature flash is much higher than the bulk temperature. With existing conventional test methods for the determination of the protection against seizure afforded by EP lubricants, a considerable rise of the bulk temperature mostly occurs; as it cannot be controlled sufficiently; thus, leaving an unknown margin for the temperature flash, it renders impossible a reliable determination.
Technical Paper

“Second-Generation” SAE 5W-30 Passenger Car Engine Oils

1986-10-01
861515
High performance lubricant additive systems have been developed to formulate SAE 5W-30 passenger car engine oils which meet current and anticipated requirements of the North American original equipment manufacturers. The trend in North America is to recommend SAE 5W-30 oils that not only meet the API SF requirements for gasoline engines (“first-generation” oils), but also meet the stringent API CC requirement for light duty diesel engines (“second-generation” oils). Furthermore, the engine builders have issued “world specifications” for motor oils which incorporate additional “second-generation” SAE 5W-30 characteristics, such as enhanced API SF limits, improved fuel efficiency, an increased margin of bearing protection, and lower finished-oil phosphorus levels. The additive systems described herein exceed API SF and CC requirements as well as “second-generation” performance hurdles.
Technical Paper

“Passenger Vehicle Petrol Consumption - Measurement in the Real World”

1800-01-01
871159
A survey of the in-service fuel consumption of passenger vehicles and derivatives in the Australian fleet was carried out in 1984-85. Seven hundred and four owners across Australia took part in the survey. Vehicle owners reported by questionnaire the amount of fuel used during four tank fills of normal operation, the distance travelled, and other details of the operating circumstances. The survey shows a clear downward trend in the fuel consumption of the Australian passenger fleet. The data also provides comparisons of actual fuel consumption obtained on the road, with laboratory derived values for fuel consumption. Vehicles in a sub-set of 40 were fitted with fuel flow meters during the survey and tested to Australian Standard 2077 for fuel consumption. The questionnaire method is shown to be a valid and accurate technique for determining in-service fuel consumption.
Technical Paper

“POSSIBILITIES IN THE FIELD OF DRY LUBRICANTS”

1958-01-01
580278
Research information on solid lubricants has been compiled for consideration in the possible use of such materials in aircraft electrical equipment. Solid lubricants are capable of lubricating at the maximum temperatures (600° F) for aircraft electrical equipment. Many solids that adhere well to metals may be useful lubricants; those with layer-lattice structure usually give low friction. Solid lubricants are most commonly used as bonded films but the use of fluid carriers and surface reaction products have considerable merit.
Technical Paper

“Optimization of Operational Parameters on Engine Performance and Emissions of a Diesel Engine Powered with Mimusops Elengi Methyl Ester with Doped TiO2 Nanoparticle with Varying Injection Pressure”

2022-12-23
2022-28-0574
The current research was aimed at determining the most effective way to use alternative renewable feedstock to power a diesel engine. Mimusops elengi, a new and novel biofuel was recognized for this current study, which is widely available in the south of India. The investigation was conducted on B20 volume basis (20% Mimusops elengi methyl ester blended with 80% diesel). Furthermore, it was recognized that when the performance characteristics were traded off, the emission magnitude has slightly higher. To address the diesel engine pollution, an oxygenated nano additive like titanium oxide was dissipated only with the fuel blend at distinct mass fractions of 25 parts per million (ppm) with differing injection pressures of 180 bar, 200 bar, 220 bar, and 240 bar. The tests were created using a statistical programme known as design of experiments, which is purely based on Taguchi and response surface methodology.
Technical Paper

“Hot Tube Test”-Analysis of Lubricant Effect on Diesel Engine Scuffing

1984-02-01
840262
To prevent engine scuffing in the field a new laboratory test called the Hot Tube Test has been established in order to evaluate the high temperature stability of diesel engine oils. In a strip mining application field test using 47 bulldozers powered by the same engine type, half of the engines suffered from piston scuffing failures when operated on a variety of commercially available API CD quality SAE 30 Grade engine oils. All the field test oils have been investigated using the Hot Tube Test, and an analysis of the results indicates that it would be possible to accurately predict scuffing failures by this test method. Furthermore, the reliability of this analysis has been verified by bench engine testing on reference oils. The reasons why the Hot Tube Test predicts the anti-scuffing performance of engine oils are discussed.
Technical Paper

“Fair” Comparison of Powertrain Configurations for Plug-In Hybrid Operation Using Global Optimization

2009-04-20
2009-01-1334
Plug-in Hybrid Electric Vehicles (PHEVs) use electric energy from the grid rather than fuel energy for most short trips, therefore drastically reducing fuel consumption. Different configurations can be used for PHEVs. In this study, the parallel pre-transmission, series, and power-split configurations were compared by using global optimization. The latter allows a fair comparison among different powertrains. Each vehicle was operated optimally to ensure that the results would not be biased by non-optimally tuned or designed controllers. All vehicles were sized to have a similar all-electric range (AER), performance, and towing capacity. Several driving cycles and distances were used. The advantages of each powertrain are discussed.
Technical Paper

“Doing More with Less” - The Fuel Economy Benefits of Cooled EGR on a Direct Injected Spark Ignited Boosted Engine

2010-04-12
2010-01-0589
Due to the rising costs of fuel and increasingly stringent regulations, auto makers are in need of technology to enable more fuel-efficient powertrain technologies to be introduced to the marketplace. Such powertrains must not sacrifice performance, safety or driver comfort. Today's engine and powertrain manufacturers must, therefore, do more with less by achieving acceptable vehicle performance while reducing fuel consumption. One effective method to achieve this is the extreme downsizing of current direct injection spark ignited (DISI) engines through the use of high levels of boosting and cooled exhaust gas recirculation (EGR). Key challenges to highly downsized gasoline engines are retarded combustion to prevent engine knocking and the necessity to operate at air/fuel ratios that are significantly richer than the stoichiometric ratio.
Technical Paper

“Build Your Hybrid” - A Novel Approach to Test Various Hybrid Powertrain Concepts

2023-04-11
2023-01-0546
Powertrain electrification is becoming increasingly common in the transportation sector to address the challenges of global warming and deteriorating air quality. This paper introduces a novel “Build Your Hybrid” approach to experience and test various hybrid powertrain concepts. This approach is applied to the light commercial vehicles (LCV) segment due to the attractive combination of a Diesel engine and a partly electrified powertrain. For this purpose, a demonstrator vehicle has been set up with a flexible P02 hybrid topology and a prototype Hybrid Control Unit (HCU). Based on user input, the HCU software modifies the control functions and simulation models to emulate different sub-topologies and levels of hybridization in the demonstrator vehicle. Three powertrain concepts are considered for LCVs: HV P2, 48V P2 and 48V P0 hybrid. Dedicated hybrid control strategies are developed to take full advantage of the synergies of the electrical system and reduce CO2 and NOx emissions.
Technical Paper

“All Electric” Controls and Accessories for Ground Vehicle Gas Turbine Propulsion Systems

1986-02-01
860238
This paper discusses the use of electromechanical devices as the kinematic portions of a microprocessor based gas turbine control system. Specific applications are: 1. An electric motor driven, positive displacement pump, which provides metered high pressure fuel to the distribution manifold. Fuel metering to be provided by varying the motor angular velocity. 2. An electric motor driven lube oil pump. 3. Electromechnical actuators for motion and control of compressor and power turbine variable geometry. 4. A starter/generator integral with the gas generator. Topics covered include: Comparison to conventional hydro-mechanical systems. Response characteristics of the fuel pump and actuator systems. Brushless D.C. motor characteristics. Power electronics requirements for brushless D.C. motors. Control electronics interface with brushless D.C. motor systems. Reliability and maintainability issues. Diagnostic/prognostic enhancements.
Technical Paper

‘FM’ - A High Efficiency Combustion System for the Future Light Duty Engine?

1982-02-01
820760
Consideration of the approaching ‘energy crisis’ reveals two requirements for future light duty automotive engines. 1) maximum economy and 2) the ability (perhaps with detail design re-optimisation) to accept a range of fuels of petroleum or other extract, of differing ignition characteristics. One combustion system which meets these requirements is the MAN ‘FM’, the potential of which has already been demonstrated in truck-size engines but on which little information has been published in light-duty engine bore sizes. The paper describes both design and experimental work carried out to evaluate the application of the FM combustion system to a light duty passenger car engine. Consideration is given to the critical design parameters associated with the application of the FM system to a multi-cylinder gasoline based engine and how the criteria can be met. Details of the design and construction of a single cylinder derivative of the multi-cylinder engine are given.
Journal Article

μ-CT Investigation into the Impact of a Fuel-Borne Catalyst Additive on the Filtration Efficiency and Backpressure of Gasoline Particulate Filters

2022-01-18
Abstract An investigation into the pre-ashing of new gasoline particulate filters (GPFs) has demonstrated that the filtration efficiency of such filters can be improved by up to 30% (absolute efficiency improvement) when preconditioned using ash derived from a fuel-borne catalyst (FBC) additive. The additive is typically used in diesel applications to enable diesel particulate filter (DPF) regeneration and can be added directly into the fuel tank of the vehicle. This novel result was compared with ash derived from lube oil componentry, which has previously been shown to improve filtration efficiency in GPFs. The lube oil-derived ash utilized in this work improved the filtration efficiency of the GPF by −30%, comparable to the ash derived from the FBC additive.
Technical Paper

λDSF: Dynamic Skip Fire with Homogeneous Lean Burn for Improved Fuel Consumption, Emissions and Drivability

2018-04-03
2018-01-0891
Dynamic skip fire (DSF) has shown significant fuel economy improvement potential via reduction of pumping losses that generally affect throttled spark-ignition (SI) engines. In DSF operation, individual cylinders are fired on-demand near peak efficiency to satisfy driver torque demand. For vehicles with a downsized-boosted 4-cylinder engine, DSF can reduce fuel consumption by 8% in the WLTC (Class 3) drive cycle. The relatively low cost of cylinder deactivation hardware further improves the production value of DSF. Lean burn strategies in gasoline engines have also demonstrated significant fuel efficiency gains resulting from reduced pumping losses and improved thermodynamic characteristics, such as higher specific heat ratio and lower heat losses. Fuel-air mixture stratification is generally required to achieve stable combustion at low loads.
Technical Paper

α-Pinene - A High Energy Density Biofuel for SI Engine Applications

2016-10-17
2016-01-2171
This study proposes a novel biofuel for spark ignition (SI) engine, α-pinene (C10H16), which is non-oxygenated and thus has a gravimetric energy density comparable to that of hydrocarbon fuels. The ignition characteristics of α-pinene were evaluated in an ignition quality tester (IQT) under standard temperature and pressure conditions. The measured ignition delay time (IDT) of α-pinene is 10.5 ms, which is lower than that of iso-octane, 17.9 ms. The estimated research octane number (RON) for pinene from IQT is 85. A temperature sweep in IQT showed that that α-pinene is less reactive at low temperatures, but more reactive at high temperatures when compared to isooctane. These results suggest that α-pinene has high octane sensitivity (OS) and is suitable for operation in turbocharged SI engines. With these considerations, α-pinene was operated in a single cylinder SI engine.
Technical Paper

µMist® - The next generation fuel injection system: Improved atomisation and combustion for port-fuel-injected engines

2011-08-30
2011-01-1890
The Swedish Biomimetics 3000's μMist® platform technology has been used to develop a radically new injection system. This prototype system, developed and characterized with support from Lotus, as part of Swedish Biomimetics 3000®'s V₂IO innovation accelerating model, delivers improved combustion efficiency through achieving exceptionally small droplets, at fuel rail pressures far less than conventional GDI systems and as low as PFI systems. The system gives the opportunity to prepare and deliver all of the fuel load for the engine while the intake valves are open and after the exhaust valves have closed, thereby offering the potential to use advanced charge scavenging techniques in PFI engines which have hitherto been restricted to direct-injection engines, and at a lower system cost than a GDI injection system.
X