Refine Your Search

Topic

Search Results

Technical Paper

Wind-Tunnel and On-Road Wind Noise: Comparison and Replication

2013-04-08
2013-01-1255
A KIA Soul was instrumented to measure the relative velocity (magnitude and yaw angle) at the front of the vehicle and in-cabin sound at a location close to the side glass near the A-pillar vortex impingement. Tests were conducted at a proving ground under a range of conditions from low wind conditions (~3 m/s) to moderate (7-8 m/s) wind speeds. For any given set of atmospheric conditions the velocity and sound data at any given position on the proving ground were noted to be very repeatable, indicating that the local wakes dominated the "turbulent" velocity field. Testing was also conducted in an aeroacoustic wind tunnel in smooth flow and with a number of novel turbulence generating methods. The resulting sounds were analyzed to study the modulation at frequencies likely to result in fluctuation strength type noise.
Technical Paper

Wind-Tunnel Tests of Vehicle Cooling System Performance at High Blockage

2000-03-06
2000-01-0351
Wind tunnels provide a convenient, repeatable method of assessing vehicle engine cooling, yet important draw-backs are the lack of a moving ground and rotating wheels, blockage constraints and, in some tunnels, the inability to simulate ambient temperatures. A series of on-road and wind-tunnel experiments has been conducted to validate a process for evaluating vehicle cooling system performance in a high blockage aerodynamic wind tunnel with a fixed ground simulation. Airflow through the vehicle front air intake was measured via a series of pressure taps and the wind-tunnel velocity was adjusted to match the corresponding pressures found during the road tests. In order to cope with the inability to simulate ambient temperatures, the technique of Specific Dissipation (SD) was used (which has previously been shown to overcome this problem).
Journal Article

Wind Tunnel and Track Tests of Class 8 Tractors Pulling Single and Tandem Trailers Fitted with Side Skirts and Boat-tails

2012-04-16
2012-01-0104
A 1:10-scale wind tunnel development program was undertaken by the National Research Council of Canada and Airshield Inc. in 1994 to develop trailer side skirts that would reduce the aerodynamic drag of single and tandem trailers. Additionally, a second wind tunnel program was performed by the NRC to evaluate the fuel-saving performance of boat-tail panels when used in conjunction with the skirt-equipped single and tandem trailers. Side skirts on tandem, 8.2-m-long trailers (all model dimensions converted to full scale) were found to reduce the wind-averaged drag coefficient at 105 km/h (65 mi/h) by 0.0758. The front pair of skirts alone produced 75% of the total drag reduction from both sets of skirts and the rear pair alone produced 40% of that from both pairs. The sum of the drag reductions from front and rear skirts separately was 115% of that when both sets were fitted, suggesting an interaction between both.
Technical Paper

Use of a Pressure-Based Technique for Evaluating the Aerodynamics of Vehicle Cooling Systems

2002-03-04
2002-01-0712
A pressure-based technique has been developed for the purpose of radiator cooling airflow measurement. The technique was effectively utilised to quantify the local time-averaged air velocity through radiator cores in a small wind tunnel. The pressure difference indicated by the technique was found to be a function of the normal component of the air velocity. This paper describes the development and use of the technique which is compact, robust and non-intrusive. By applying this technique, the airflow distribution across the radiator face has been measured for a complete vehicle in an aerodynamic wind tunnel and in an environmental chamber. Results are compared for the different test environments. The influence of airflow distribution on the Specific Dissipation (a parameter used for evaluating radiator cooling performance) is examined and results for propeller-based methods and pressure-based methods are compared.
Technical Paper

Truck Aerodynamics Reborn - Lessons from the Past

2003-11-10
2003-01-3376
During the late 1970's and early 1980's considerable effort was expended in the improvement of truck aerodynamics to reduce fuel consumption. This first-generation effort focused on aerodynamic drag reduction obtained from add-on aerodynamic aids to the cab or the trailer, from improved cab shaping and from body/trailer front-end edge rounding. Rising fuel prices have renewed interest in further aerodynamic improvements. This paper will review past developments and show that several unused concepts offer potential as second-generation, add-on, fuel-saving technology. It will raise the issue of finding successful means for bringing them profitably into service, which will require concerted action by the trucking industry, manufacturers and government.
Technical Paper

The Unsteady Wind Environment of Road Vehicles, Part Two: Effects on Vehicle Development and Simulation of Turbulence

2007-04-16
2007-01-1237
This paper summarises the effects of turbulence on the aerodynamics of road vehicles, including effects on forces and aero-acoustics. Data are presented showing that a different design of some vehicles may result when turbulent flow is employed. Methods for generating turbulence, focusing on physical testing in full-size wind tunnels, are discussed. The paper is Part Two of a review of turbulence and road vehicles. Part One (Cooper and Watkins, 2007) summarised the sources and nature of the turbulence experienced by surface vehicles.
Technical Paper

The Two-Variable Boundary-Interference Correction Applied to Automotive Aerodynamic Data

2008-04-14
2008-01-1204
This paper presents applications of the Two-Variable method for the correction of solid-wall boundary interference of both wind tunnel and CFD data for a simplified automobile model at zero yaw angle and to a flat-plate wing over a 90° angle range. The latter model has flowfields that vary from those of a streamlined body at 0° yaw to those of a bluff body at 90° yaw. The Two-Variable method utilizes measurements on the wind tunnel walls to estimate the interference velocity components induced by the solid boundaries. The correction of the forces and moments from these interference velocities are obtained by Hackett's force model. The paper compares this method to a simpler analytical method that is more practical to apply in closed-wall wind tunnels. It is shown that the effect of the wind tunnel walls or CFD domain boundaries can accurately removed by these techniques for model/domain area ratios of up to 0.15.
Technical Paper

The Passenger Vehicle Wake Under the Influence of Upstream Turbulence

2003-03-03
2003-01-0650
In this study, flow measurements were taken in the wake of a 3/10 scale model of a passenger vehicle using a high frequency, four-hole pressure probe (Dynamic Cobra Probe). The purposes of this study were to further the understanding of the wake development of a passenger vehicle in isolation (in order to provide representative input boundary conditions for CFD and EFD simulations of vehicles traveling in traffic) and to also investigate the wake properties under the influence of upstream turbulence (i.e. with a turbulence generator upstream). The results from several downstream planes are presented and include the time-averaged contour plots of turbulence intensity, velocity deficit and vorticity and cross-flow velocity fields. The presence of increased levels of upstream turbulence mostly affected the upper region of the vehicle wake. In this region, the A-pillar vortex was reduced in size and strength, while the C-pillar vortex had increased in both respects.
Technical Paper

The Effect of Handlebar Fairings on Motorcycle Aerodynamics

1983-02-01
830156
A series of wind tunnel experiments were used to quantify the mean and unsteady aerodynamic forces on a motorcycle fitted with a handlebar fairing and a handlebar windshield. The results have shown that the positive aerodynamic yaw damping of the steerable front frame tends to stabilize wobble mode when a handlebar device is present. The mean front-frame yawing moments as a function of yaw angle were harder to interpret without use of a dynamic simulation. Static arguments were advanced to suggest that cross-wind response may be reduced with a fairing or windshield mounted.
Technical Paper

The Effect of Front-Edge Rounding and Rear-Edge Shaping on the Aerodynamic Drag of Bluff Vehicles in Ground Proximity

1985-02-01
850288
Wind tunnel measurements on a rectangular vehicle-like shape and on two detailed, scale-model trucks have been employed to define the front and rear edge geometries that minimize aerodynamic drag. Optimum configurations are identified with sufficient detail for commercial vehicle design purposes. Comparisons of the model-scale measurements with limited measurements on a full-scale straight truck in a large wind tunnel support the interpretation of these test results.
Technical Paper

The Effect of Changes in Ambient and Coolant Radiator Inlet Temperatures and Coolant Flowrate on Specific Dissipation

2000-03-06
2000-01-0579
In this paper, a theoretical model for the calculation of Specific Dissipation (SD) was developed. Based on the model, the effect of ambient and coolant radiator inlet temperatures on SD has been predicted. Results indicate that the effect of ambient and coolant inlet temperature variation on SD is small (less than 2%) when ambient temperature varies between 10 and 50°C and coolant radiator inlet temperature between 60 and 120°C. The effect of coolant flowrate on SD is larger if there is a larger flowrate variation. Experimental results indicate that a 1 % variation at 1.0 L/s will cause about ±0.6% SD variation. Therefore the flowrate should be carefully controlled.
Technical Paper

The Aerodynamic Performance of Automotive Underbody Diffusers

1998-02-23
980030
This paper examines the aerodynamic behaviour of plane-walled, single-plane-expansion, underbody diffusers fitted to a wind-tunnel model of a wheel-less, simple body having automobile proportions. The measurements were performed over a moving-belt assembly in the Pilot Wind Tunnel of the National Research Council of Canada (NRC). The purposes of the investigation were: to understand the governing physics of automotive underbody diffusers operating in ground proximity, to examine the effect of moving-ground and fixed-ground simulations on the behaviour of such diffusers and on the corresponding vehicle downforce and drag, to map the performance of simple, quasi-two-dimensional diffusers when used to produce downforce or drag reduction.
Technical Paper

Simulation of Vehicle A-Pillar Aerodynamics using various Turbulence Models

2004-03-08
2004-01-0231
Vortices formed around the A-pillar region dictates the pressure distribution on the side panels of a passenger vehicle and also can lead to aerodynamic noise generation. This paper compares the suitability of various turbulence models in simulating the flow behind a vehicle A-pillar region under laboratory operating conditions. Commercial software's (FLUENT and SWIFT) were used to compare the performance of various turbulence models. In FLUENT, a simplified vehicle model with slanted A-pillar geometry was generated using GAMBIT and in SWIFT, the simplified vehicle model was generated using Fame Hybrid. Computational Fluid Dynamics (CFD) simulations were carried out using FLUENT under steady state conditions using various turbulence models (k-, k- Realize, k- RNG, k- and Spalart Allamaras). In SWIFT, k-, A-RSM and HTM2 turbulence models were used for the steady state simulations. Investigations were carried out at velocities of 60, 100 and 140km/h and at 0-degree yaw angle.
Technical Paper

Reduced Drag and Adequate Cooling for Passenger Vehicles Using Variable Area Front Air Intakes

2006-04-03
2006-01-0342
Engine cooling systems are usually designed to meet two rare and extreme conditions; driving at maximum speed and driving up a specified gradient at full throttle while towing a trailer of maximum permitted mass. At all other times, the cooling system operates below its maximum capacity with an incurred drag penalty. In this work it is being suggested to design the system using the existing methods and then vary the area of the cooling air intakes to permit the minimum amount of cooling air for adequate engine cooling. A full-size, Australian made Ford Falcon car (a large modern 'family' saloon) was tested at the Monash University Aero-acoustic Wind Tunnel. The cooling air intakes of the vehicle were shielded progressively until fully blocked. Four different possibilities of shielding were investigated with the aim of determining the variation of drag reduction with the shielding method employed.
Technical Paper

Pickup Truck Aerodynamics - Keep Your Tailgate Up

2004-03-08
2004-01-1146
The aerodynamic effects of the pickup truck tailgate are examined in this paper. It is shown that the removal or the lowering of the tailgate increases the aerodynamic drag of a pickup truck, increases lift by up to sixty percent and increases the yawing moment. All these changes are negative and reduce vehicle performance, albeit, only by small amounts. This finding demonstrates that the commonly seen removal of tailgates to reduce aerodynamic drag is a public misconception that should be discouraged by manufacturers and by regulators.
Technical Paper

Green Racing; Solar and FSAE

2011-10-06
2011-28-0023
Green racing technologies are described with a focus on two categories of sustainable racing; solar racing, including an overview of the World Solar Challenge (WSC) held in Australia, and Formula SAE-E (Society of Automotive Engineers-Electric). Both types of cars utilise sustainably generated electricity, the former uses solar arrays integrated into the vehicle body and the latter electricity generated from a renewable energy park and stored onboard in lithium polymer cells. The design considerations of both vehicles are contrasted with a focus on energy usage minimisation. The Aurora team (which has broken many records, including winning the World Solar Challenge across Australia) is used to illustrate the importance of minimizing the power requirements by having a low aerodynamic drag, frontal area, a highly efficient powertrain and low rolling resistance. To illustrate the technology behind FSAE Electric the R10E car from RMIT is described.
Technical Paper

Full-Scale Wind Tunnel Tests of Production and Prototype, Second-Generation Aerodynamic Drag-Reducing Devices for Tractor-Trailers

2006-10-31
2006-01-3456
The National Research Council of Canada (NRC) has completed the second round of full-scale wind tunnel tests on Class-8 tractor-trailer combinations. The primary intent of the program is to effect a reduction in greenhouse-gas emissions by reducing the fuel consumption of trucks through aerodynamic drag reduction. Add-on aerodynamic components developed at the NRC several decades ago have become important contenders for drag reduction. This program has encouraged the commercialization of these technologies and this round of tests evaluated the first commercial products. Three primary devices have been evaluated, with the combination able to reduce fuel consumption by approximately 6,667 liters (1,761 US gal) annually, based on 130,000 km (81,000 miles) traveled per tractor at a speed of 100 km/hr (62 mi/hr).
Technical Paper

Effects of Vehicle A-pillar Shape on Local Mean and Time-Varying Flow Properties

2001-03-05
2001-01-1086
Separated flow is the main generator of aerodynamic noise in passenger vehicles. The flow around the A-pillar is central to the wind noise as many modern vehicles still have high fluctuating pressures due to flow separations in this region. Current production vehicle geometry is restricted due to the amount of three dimensionality possible in laminated windscreen glass (and door opening etc). New materials (e.g., polycarbonate) offer the possibility of more streamlined shapes which allow less or no flow separation. Therefore, a series of experimental investigations have been conducted to study the effects of the A-pillar and windshield geometry and yaw angles on the local flow and noise using a group of idealised road vehicle models. Surface mean and fluctuating pressures were measured on the side window in the A-pillar regions of all models at different Reynolds numbers and yaw angles.
Technical Paper

Effects of On-Road Turbulence on Automotive Wind Noise: Comparing Wind-Tunnel and On-Road Tests

1997-02-24
970406
For high-speed driving conditions, the air flow around a car creates wind noise that is transmitted into the cabin, which can dominate other noises. If an atmospheric wind is present, it will create a turbulent cross wind, which not only changes the air flow velocity and direction as experienced by the vehicle, but leads to continuously varying wind noise, as heard inside the car. The purpose of this paper is to look at how the on-road wind environment affects wind noise, and to evaluate the need to simulate real on-road conditions such as fluctuating yaw angles and velocities in vehicle wind tunnels.
Technical Paper

Effect of Cross-Winds on Motor Car Engine Cooling

1997-02-24
970138
The sensitivity of cross-winds in reducing the engine cooling ability in motor cars is highlighted. Tests on three different motor cars were conducted in the Monash University full-scale wind tunnel at different yaw angles under different wind velocities. The test results show that motor car engine cooling capability decreases with an increase in yaw angles. For a wind velocity of 14 m/s, a 13% decrease in radiator cooling capability was found at a yaw angle of 20° compared to a zero yaw angle. The effect of yaw angles on the engine cooling also depends on the motor car front-end configuration, but this becomes less important with increasing wind velocity. The effect of cross-winds on car engine cooling was also evaluated by on-road engine cooling tests. A convenient experimental method to measure wind velocity and yaw angle relative to a moving car is also described.
X