Refine Your Search

Topic

Search Results

Technical Paper

Transient Characteristics of Combustion and Emissions during Start up at Higher Cranking Speed in a PFI Engine for HEV Application

2008-10-06
2008-01-2420
The transient characteristics of combustion and emissions during the engine start up at different higher cranking speeds for hybrid electric vehicle (HEV) applications were presented in this paper. Cycle-by-cycle analysis was done for each start up case. Intake air mass during the first several cycles decrease as the engine was cranked at higher speed. Ignition timing is delayed with higher cranking speed, which leads to an increase of exhaust temperature. For various start up cases, similar quantity of fuel is injected at the first cycle, but the ignition timing is significantly delayed to meet the acceleration requirement when cranking speed enhanced. Because of the deterioration of intake charge, the air-fuel mixture is over-enriched in the first several cycles for the cases at higher cranking speed. With cranking speed is increased, the in-cylinder residual gas fraction rises, which leads to poor combustion and decrease of mass fraction of burned fuel.
Technical Paper

Transient Characteristics of Cold Start Emissions from a Two-Stage Direct Injection Gasoline Engines Employing the Total Stoichiometric Ratio and Local Rich Mixture Start-up Strategy

2012-04-16
2012-01-1068
To improve the cold start performance and to reduce the misfire occurrence at cold start, the start-up strategy of total stoichiometric ratio combined with local rich mixture was applied in the study. The effect of injection strategy (the 1st injection timing, 2nd injection timing, 1st and 2nd fuel injection proportion and ignition timing) on the cold start HC emissions in the initial 10 cycles were investigated in a Two stage direct injection (TSDI) gasoline engine. The transient HC and NO emissions in the initial 10 cycles were analyzed, when the fuels are injected in the only 1st cycle and in the followed all cycles. The transient misfiring HC emissions were compared between the single and two-stage injection modes. In addition, the unburned HC (UBHC) emissions in the 1st cycle are compared among the TSDI engine, Gasoline direct injection (GDI) engine, Port fuel injection (PFI) engine and Liquefied petroleum gaseous (LPG) engine at the stoichiometric ratio.
Technical Paper

Torsional Vibration Modeling of Driveline System for EV Low-Frequency Flutter

2015-06-15
2015-01-2191
In view of the problem of low-frequency (less than 10Hz, such as 0.5Hz, 1.15Hz, 8Hz in this paper) longitudinal vibration exists in a pure electric vehicle, modeling methods of drive-line torsion vibration system are conducted. Firstly, dynamometer test is performed, signals of motor speed and seat rail acceleration are obtained, the frequency characteristics of flutter is determined using the order analysis and time frequency analysis. Then four types of modeling and analysis are investigated facing the drive-line torsion vibration problem, including single model without electromagnetic stiffness, branch model without electromagnetic stiffness, single model considering electromagnetic stiffness and branch model considering electromagnetic stiffness. The results show that, modeling taking into account the electromagnetic stiffness and branches can reflect more low-frequency characteristics helps to reveal the low-frequency longitudinal flutter of the researched electric vehicle.
Technical Paper

The Social Economical Benefit Estimation by HEVs Application-Shanghai Case Study

2008-06-23
2008-01-1565
In this paper, a case study of Shanghai HEVs application and its effects on the social and environmental benefits are presented based on the multi views on the different aspects, such as, not only for the fuel consumption saving, but also emissions reduction and health effect, agriculture loss and cleaning cost. The results show that the potential benefits for the society from HEVs application are markedly with the increase of the ratio of HEV in the population of vehicle. Based on this, the policy to promote the HEV purchased by consumers is very important at the beginning of HEV into market.
Technical Paper

The Effect of Tuning PMSM Torque to Track Engine Torque on Speed Fluctuation of Range Extender

2021-04-06
2021-01-0784
REEV (Range-Extended Electric Vehicle) can avoid the mileage anxiety of BEV (Battery Electric Vehicle). Nevertheless, RE (Range Extender) for passenger cars prefers to use ICE (Internal Combustion Engine) with smaller displacement and lower cylinder number, which is usually with a worse vibration performance at low speeds. As RE only outputs electricity, it provides the possibility to optimize NVH (Noise, Vibration, and Harshness) of the engine by PMSM (Permanent Magnet Synchronous Motor). By real-time control, the electromagnetic torque of PMSM can track the shaft torque fluctuation during engine strokes, especially the combustion stroke. When the instability and rolling torque of RE could be suppressed, NVH performance of RE can be improved. This paper presents simulation research on speed fluctuation suppression for RE engine based on dynamic torque compensation by controlling a PMSM.
Technical Paper

The Effect of High-Power Capacitive Spark Discharge on the Ignition and Flame Propagation in a Lean and Diluted Cylinder Charge

2016-04-05
2016-01-0707
Research studies have suggested that changes to the ignition system are required to generate a more robust flame kernel in order to secure the ignition process for the future advanced high efficiency spark-ignition (SI) engines. In a typical inductive ignition system, the spark discharge is initiated by a transient high-power electrical breakdown and sustained by a relatively low-power glow process. The electrical breakdown is characterized as a capacitive discharge process with a small quantity of energy coming mainly from the gap parasitic capacitor. Enhancement of the breakdown is a potential avenue effectively for extending the lean limit of SI engine. In this work, the effect of high-power capacitive spark discharge on the early flame kernel growth of premixed methane-air mixtures is investigated through electrical probing and optical diagnosis.
Technical Paper

The Characteristic of Transient HC Emissions of the First Firing Cycle During Cold Start on an LPG SI Engine

2006-10-16
2006-01-3403
The first firing cycle is very important for cold-start. Misfire of the first firing cycle can lead to significant HC emissions and affect the subsequent cycles. The first firing cycle for Gasoline SI engine have been reported in many studies. Liquefied petroleum gas (LPG) as an alternative fuel has been widely used in commercial vehicles during the last decade. However, the properties of the first firing cycle for LPG SI engine have been seldom reported. This paper presents an investigation of the characteristics of transient HC emissions of the first firing cycle during cold start on a LPG SI engine. A fast-response flame ionization detector (FFID) was applied to measure transient HC emissions of the first firing cycle in the exhaust port of the engine. At the same time, the transient cylinder pressure and instantaneous crankshaft speed of the engine were measured and recorded.
Technical Paper

Study on Fuel Economy Improvement by Low Pressure Water-Cooled EGR System on a Downsized Boosted Gasoline Engine

2016-04-05
2016-01-0678
This research was concerned with the use of Exhaust Gas Recirculation (EGR) improving the fuel economy over a wide operating range in a downsized boosted gasoline engine. The experiments were performed in a 1.3-Litre turbocharged PFI gasoline engine, equipped with a Low Pressure (LP) water-cooled EGR system. The operating conditions varied from 1500rpm to 4000rpm and BMEP from 2bar to 17bar. Meanwhile, the engine’s typical operating points in NEDC cycle were tested separately. The compression ratio was also changed from 9.5 to 10.5 to pursue a higher thermal efficiency. A pre-compressor throttle was used in the experiment working together with the EGR loop to keep enough EGR rate over a large area of the engine speed and load map. The results indicated that, combined with a higher compression ratio, the LP-EGR could help to reduce the BSFC by 9∼12% at high-load region and 3∼5% at low-load region.
Technical Paper

Simulation of charged species flow and ion current detection for knock sensing in gasoline engines with active pre-chamber

2023-09-29
2023-32-0005
Recently, it has been wildly recognized that active pre- chamber has a significant effect on extending the lean burn limit of gasoline engines. Ion current signals in the combustion is also considered as a promising approach to the engine knock detection. In this study, the feasibility of employing ion current in an active pre- chamber for combustion diagnosis was analyzed by three-dimensional numerical simulation on a single- cylinder engine equipped with active pre-chamber. The flow characteristics of charged species (NO+, H3O+ and electrons) in the main chamber and pre-chamber under knock conditions are investigated at different engine speeds, intake pressures and ignition timings. The results show that the ion current can theoretically be used for the knock detection of the active pre- chamber. The peak value of the electron or H3O+ mass fraction caused by knocking backflow can be used as knock indication peak.
Technical Paper

Research on Life Cycle of Typical Passenger Vehicles Based on Energy Structure

2020-12-14
2020-01-5187
Based on the principle of carbon footprint, this paper selects typical passenger cars, such as internal combustion engine vehicles (ICEV), plug-in hybrid electric vehicles (PHEV) and battery electric vehicles (BEV) in the market of China as the research objects, and compares the energy consumption and carbon emissions of the three vehicle models in the whole life cycle for three major stages of manufacturing, driving and recycling in three representative cities. The results show that the manufacturing energy consumption of BEV is 5 times of HEV and 10 times of ICEV. For the BEV, only after driving a certain mileage it can be a less the unit energy consumption and emissions than ICEV. The whole life cycle carbon emissions of passenger cars with different power types is not only related to mileage, but also related to the energy structure of local electric power supply.
Technical Paper

Real-Time Transfer Case 4WD Control Development to Improve Vehicle Coasting Stability

2023-04-11
2023-01-0909
The real-time transfer case installed on the four-wheel drive vehicle with a longitudinally mounted engine, can distribute not only the engine drive torque, but also the engine drag torque between the front and rear axles, to improve vehicle traction and stability performance. When under vehicle coasting condition, the engine drag torque may cause vehicle rear wheel slippage on low friction adhesion road, which causes a vehicle to be unstable and spin in. Although the current engine Drag Torque Control technology has the ability to reduce rear wheel longitudinal slippage by engine torque control, but the control effect is poor, the wheel slip ratio is large and the slipping duration is long, the vehicle still has the tendency to spin in. This paper proposed a new transfer case coasting control strategy to avoid this problem.
Technical Paper

Power Matching and Control Strategy of Plug-in Series Hybrid Electric Car

2010-10-25
2010-01-2195
In this paper, based on the plug-in series hybrid electric vehicle development project, the vehicle technology solutions and the match of power system parameters were analyzed. The vehicle control strategies were identified and optimized according to plug-in hybrid vehicle features. The plug-in series hybrid, rule-based logic threshold switching control strategy, charge depleting (CD) mode and charge-sustaining (CS) mode are chosen according to the key factors, such as the environment, performance requirements, technical requirements and cost. And then the structure and model of vehicle control strategy were established to carry out vehicle energy management and power system control. The parameter selection, electric drive system matching, energy storage system design based on the requirement of vehicle performance, system architecture and control strategy are presented.
Technical Paper

Optimization of EV Mounting System Considering Power Train Torsion Control

2015-06-15
2015-01-2225
Faced on transient vibration of EV, considering the characteristics of the electric drive system, active and passive integrated transient vibration control method of power train mounting system was proposed. Models of power train system and mounting system were established, modal characteristics were grasped by simulation and experiment. A feed-forward controller was constructed from the facet of active control, mounting system transient vibration and power train torsion vibration were reduced. Based on this, further optimization of mounting system was conducted from a passive control perspective. Results show that the active and passive integrated control method can effectively reduce the dynamic reaction force of mounting points, improve the vibration conditions of power train and vehicle body as well.
Technical Paper

Optimization of Control Strategy for Engine Start-stop in a Plug-in Series Hybrid Electric Vehicle

2010-10-25
2010-01-2214
Plug-in hybrid electric vehicles (PHEVs) provide significantly improvement in fuel economy over conventional vehicles as well as reductions in greenhouse gas and petroleum. Numerous recent reports regarding control strategy, power train configuration, driving pattern, all electric range (AER) and their effects on fuel consumption and electric energy consumption of PHEVs are reported. Meanwhile, the control strategy for engine start-stop and mileage between recharging events from the electricity grid also has an important influence on the petroleum displacement potential of PHEVs, but few reports are published. In this paper, a detailed simulation model is set up for a plug-in series hybrid electric vehicle (PSHEV) employing the AVL CRUISE. The model was employed to predict the AER of the baseline PSHEV using rule-based logical threshold switching control strategy.
Technical Paper

Numerical Study on Flammability Limit and Performance of Compression-Ignition Argon Power Cycle Engine with Fuel of Hydrogen

2021-04-06
2021-01-0391
The argon power cycle engine, which uses hydrogen as fuel, oxygen as oxidant, and argon other than nitrogen as the working fluid, is considered as a novel concept of zero-emission and high-efficiency system. Due to the extremely high in-cylinder temperature caused by the lower specific heat capacity of argon, the compression ratio of spark-ignition argon power cycle engine is limited by preignition or super-knock. Compression-ignition with direct-injection is one of the potential methods to overcome this challenge. Therefore, a detailed flammability limit of H2 under Ar-O2 atmosphere is essential for better understanding of stable autoignition in compression-ignition argon power cycle engines.
Technical Paper

Numerical Simulation of Surface Temperature Fluctuation and Thermal Barrier Coating at the Piston Top for a Diesel Engine Performance Improvement

2021-04-06
2021-01-0229
Low heat rejection (LHR) combustion has been recognized as a potential technology for further fuel economy improvement. This paper aims to simulate how the piston top’s thermal barrier coating affects the engine’s thermal efficiency and emissions. Accordingly, a Thin-wall heat transfer model in AVL Fire software was employed. The effects of increasing the piston top surface temperature, comparing different thermal barrier coating material, were simulated at the engine’s rated power operating point, so as the piston top’s surface roughness. In comparison to a standard diesel engine, the indicated thermal efficiency (ITE) could increase by 0.4% when the surface temperature of the piston top changed from 575K to 775K.
Technical Paper

Numerical Simulation and Optimization of the Underhood Fluid Field and Cooling Performance for Heavy Duty Commercial Vehicle under Different Driving Conditions

2015-09-29
2015-01-2902
As the commercial vehicle increases staggeringly in China, environmental pollution and excessively fuel consumption can't be neglected anymore. Vehicle thermal management has been adopted by many vehicle manufactures as an ideal alternative to reduce fuel consumption and exhaust emission by its cost-efficient and effective merit. In addition, the components in heavy duty commercial vehicle engine hood may suffer overheat harm. Hence investigating the thermal characteristics in engine hood can be an effective way to identify and dismiss the potential overheat harm. In terms of this, the paper has adopted CFD simulation method to obtain the comprehensive thermal flow field characteristics of engine hood in a heavy commercial vehicle. Then by analyzing the thermal flow field in engine hood, concerning optimization strategies were put forward to improve the thermal environment.
Technical Paper

NVH Features and Corresponding Control Strategies for Differing Architecture Hybrid Vehicle Facing Specific Driving Scenarios

2023-05-08
2023-01-1098
Hybrid vehicle, equipped power source not only gas engine but also motor, power electronics and differing types of transmissions, manifests more complicated/specific/exceptional NVH behaviors than that of gas powered vehicle, like parking engine start/stop for charging, EV mode traction/recuperation, mode switch, etc. On top of that, differing hybrid architecture exists, depending on number and location of motor and type of transmission, hence NVH features and related control strategies are highly likely to be different even under identical driving scenarios, as such, the holistic and deep insight into the NVH features and related control strategies are very meaningful for hybrid vehicle NVH performance refinement, and will expedite the process of vehicle NVH development.
Technical Paper

Knock and Pre-Ignition Detection Using Ion Current Signal on a Boosted Gasoline Engine

2017-03-28
2017-01-0792
In order to meet the ever more stringent demands on the CO2 emission reduction, downsized modern gasoline engine with highly boosted turbo charger meets new challenges such as super knock and pre-ignition, which will influence the engine combustion efficiency, smooth operation and even cause mechanical failure. A spark plug type ion current detection sensor was used in a 1.8L turbo charged gasoline engine. The ion-current wave signal differed greatly under different engine operating conditions such as without knock, with knock of different knock intensities. The frequency spectrum of ion-current was also studied, by the method of discrete Fourier transform (DFT). In knocking cycles, there were fluctuations of frequency 8-13 kHz both in the combustion pressure signal and in the ion current signal, proving the existence of knock information.
Technical Paper

Knock Inhibition in Hydrogen Fueled Argon Power Cycle Engine with a Higher Compression Ratio by Water Direct Injection at Late Exhaust Stroke

2023-04-11
2023-01-0227
Hydrogen-fueled Argon Power Cycle engine is a novel concept for high efficiency and zero emissions, which replaces air with argon/oxygen mixtures as working fluid. However, one major challenge is severe knock caused by elevated in-cylinder temperature resulting from high specific heat ratio of Argon. A typical knock-limited compression ratio is around 5.5:1, which limits the thermal efficiency of Argon Power Cycle engines. In this article, preliminary experimental research on the effect of water direct injection at late exhaust stroke is presented at 1000 r/min with IMEP ranging from 0.3~0.6 MPa. Results show that, with temperature-reducing effect of water evaporation, knock is greatly inhibited and the engine can run normally at a higher compression ratio of 9.6:1. Water injected at the exhaust stroke minimizes its reducing effect on the specific heat ratio of the working fluid during the compression and expansion strokes.
X