Refine Your Search

Topic

Search Results

Technical Paper

A 3D-CFD Methodology for Combustion Modeling in Active Prechamber SI Engines Operating with Natural Gas

2022-03-29
2022-01-0470
Active prechamber combustion systems for SI engines represent a feasible and effective solution in reducing fuel consumption and pollutant emissions for both marine and ground heavy-duty engines. However, reliable and low-cost numerical approaches need to be developed to support and speed-up their industrial design considering their geometry complexity and the involved multiple flow length scales. This work presents a CFD methodology based on the RANS approach for the simulation of active prechamber spark-ignition engines. To reduce the computational time, the gas exchange process is computed only in the prechamber region to correctly describe the flow and mixture distributions, while the whole cylinder geometry is considered only for the power-cycle (compression, combustion and expansion). Outside the prechamber the in-cylinder flow field at IVC is estimated from the measured swirl ratio.
Technical Paper

A Three-Way Catalyst Model for a Bio-Methane Heavy-Duty Engine: Characterization at Different Lambda

2024-04-09
2024-01-2084
Given the spread of natural gas engines in low-term toward decarbonization and the growing interest in gaseous mixtures as well as the use of hydrogen in Heavy-Duty (HD) engines, appropriate strategies are needed to maximize thermal efficiency and achieve near-zero emissions from these propulsor systems. In this context, some phenomena related to real-world driving operations, such as engine cut-off or misfire, can lead to inadequate control of the Air-to-Fuel ratio, key factor for Three-Way Catalyst (TWC) efficiency. Goal of the present research activity is to investigate the performance of a bio-methane-fueled HD engine and its Aftertreatment System (ATS), consisting of a Three-Way Catalyst, at different Air-to-Fuel ratio. An experimental test bench characterization, in different operating conditions of the engine workplan, was carried out to evaluate the catalyst reactivity to a defined pattern of the Air-to-Fuel ratio.
Technical Paper

Advanced Turbulence Model for SI Combustion in a Heavy-Duty NG Engine

2022-03-29
2022-01-0384
In the recent years, the interest in heavy-duty engines fueled with Compressed Natural Gas (CNG) is increasing due to the necessity to comply with the stringent CO2 limitation imposed by national and international regulations. Indeed, the reduced number of carbon atoms of the NG molecule allows to reduce the CO2 emissions compared to a conventional fuel. The possibility to produce synthetic methane from renewable energy sources, or bio-methane from agricultural biomass and/or animal waste, contributes to support the switch from conventional liquid fuels to CNG. To drive the engine development and reduce the time-to-market, the employment of numerical analysis is mandatory. This requires a continuous improvement of the simulation models toward real predictive analyses able to reduce the experimental R&D efforts. In this framework, 1D numerical codes are fundamental tools for system design, energy management optimization, and so on.
Journal Article

Alternative Diesel Fuels Effects on Combustion and Emissions of an Euro4 Automotive Diesel Engine

2009-09-13
2009-24-0088
The present paper describes the first results of a cooperative research project between GM Powertrain Europe and Istituto Motori of CNR aimed at studying the impact of Fatty-Acid Methyl Esters (FAME) and gas-to-liquid (GTL) fuel blends on the performance, emissions and fuel consumption of modern automotive diesel engines. The tests were performed on the architecture of GM 1.9L Euro4 diesel engine for passenger car application, both on optical single-cylinder and on production four-cylinder engines, sharing the same combustion system configuration. Various blends of biodiesels as well as reference diesel fuel were tested. The experimental activity on the single-cylinder engine was devoted to an in-depth investigation of the combustion process and pollutant formation, by means of different optical diagnostics techniques, based on imaging multiwavelength spectroscopy.
Journal Article

Alternative Diesel Fuels Effects on Combustion and Emissions of an Euro5 Automotive Diesel Engine

2010-04-12
2010-01-0472
The present paper describes some results of a cooperative research project between GM Powertrain Europe and Istituto Motori of CNR aimed at studying the impact of FAME and GTL fuel blends on the performance, emissions and fuel consumption of the latest-generation automotive diesel engines. The investigation was carried out on the newly released GM 2.0L 4-cylinder “torque-controlled” Euro 5 diesel engine for PC application and followed previous tests on its Euro 4 version, in order to track the interaction between the alternative fuels and the diesel engine, as the technology evolves. Various blends of first generation biodiesels (RME, SME) and GTL with a reference diesel fuel were tested, notably B20, B50 and B100. The tests were done in a wide range of engine operation points for the complete characterization of the biodiesels performance in the NEDC cycle, as well as in full load conditions.
Journal Article

Analysis of Particle Mass and Size Emissions from a Catalyzed Diesel Particulate Filter during Regeneration by Means of Actual Injection Strategies in Light Duty Engines

2011-09-11
2011-24-0210
The diesel particulate filters (DPF) are considered the most robust technologies for particle emission reduction both in terms of mass and number. On the other hand, the increase of the backpressure in the exhaust system due to the accumulation of the particles in the filter walls leads to an increase of the engine fuel consumption and engine power reduction. To limit the filter loading, and the backpressure, a periodical regeneration is needed. Because of the growing interest about particle emission both in terms of mass, number and size, it appears important to monitor the evolution of the particle mass and number concentrations and size distribution during the regeneration of the DPFs. For this matter, in the presented work the regeneration of a catalyzed filter was fully analyzed. Particular attention was dedicated to the dynamic evolution both of the thermodynamic parameters and particle emissions.
Technical Paper

Application of a Dual Fuel Diesel-CNG Configuration in a Euro 5 Automotive Diesel Engine

2017-03-28
2017-01-0769
An increasing interest in the use of natural gas in CI engines is currently taking place, due to several reasons: it is cheaper than conventional Diesel fuel, permits a significant reduction of carbon dioxide and is intrinsically clean, being much less prone to soot formation. In this respect, the Dual Fuel concept has already proven to be a viable solution, industrially implemented for several applications in the heavy duty engines category. An experimental research activity was devoted to the analysis of the potentiality offered by the application of a Dual Fuel Diesel-CNG configuration on a light duty 2L Euro 5 automotive diesel engine, equipped with an advanced control system of the combustion. The experimental campaign foresaw to test the engine in dynamic and steady state conditions, comparing engine performance and emissions in conventional Diesel and Dual Fuel combustion modes.
Technical Paper

Assessment of Closed-Loop Combustion Control Capability for Biodiesel Blending Detection and Combustion Impact Mitigation for an Euro5 Automotive Diesel Engine

2011-04-12
2011-01-1193
The present paper describes the results of a cooperative research project between GM Powertrain Europe and Istituto Motori - CNR aimed at studying the impact of both fresh and highly oxidized Rapeseed Methyl Ester (RME) at different levels of blending on performance, emissions and fuel consumption of modern automotive diesel engines featuring Closed-Loop Combustion Control (CLCC). In parallel, the capability of this system to detect the level of biodiesel blending through the use of specific detection algorithms was assessed. The tests were performed on the recently released 2.0L Euro5 GM diesel engine for passenger car application equipped with embedded pressure sensors in the glow plugs. Various blends of fresh and aged RME with reference diesel fuel were tested, notably 20% RME by volume (B20), 50% (B50) and pure RME (B100).
Technical Paper

Assessment of Engine Control Parameters Effect to Minimize GHG Emissions in a Dual Fuel NG/Diesel Light Duty Engine

2018-04-03
2018-01-0266
The interest in Natural Gas (NG) as alternative fuel for transportation is constantly growing, mostly due to its large availability and lower environmental impact with respect to gasoline or diesel fuel. In this scenario, the application of the Dual Fuel (DF) Diesel- Natural Gas (NG) combustion concept to light duty engines can represent an important route to increment the diffusion of natural gas use. Many studies have proven the benefits of DF with respect to conventional diesel combustion in terms of CO2, NOx, PM and PN emissions, with the main drawback of high unburned hydrocarbon, mainly at low/partial engine loads. This last aspect still prevents the application of DF mode to small displacement engines. In the present work, a 2.0 L Euro 5 compliant diesel engine, equipped with an advanced electronic closed-loop combustion control (CLCC) system, has been set up to operate in DF mode and tested on a dyno test bench.
Journal Article

Balancing Hydraulic Flow and Fuel Injection Parameters for Low-Emission and High-Efficiency Automotive Diesel Engines

2019-09-09
2019-24-0111
The introduction of new light-duty vehicle emission limits to comply under real driving conditions (RDE) is pushing the diesel engine manufacturers to identify and improve the technologies and strategies for further emission reduction. The latest technology advancements on the after-treatment systems have permitted to achieve very low emission conformity factors over the RDE, and therefore, the biggest challenge of the diesel engine development is maintaining its competitiveness in the trade-off “CO2-system cost” in comparison to other propulsion systems. In this regard, diesel engines can continue to play an important role, in the short-medium term, to enable cost-effective compliance of CO2-fleet emission targets, either in conventional or hybrid propulsion systems configuration. This is especially true for large-size cars, SUVs and light commercial vehicles.
Journal Article

Benefits and Drawbacks of Compression Ratio Reduction in PCCI Combustion Application in an Advanced LD Diesel Engine

2009-04-20
2009-01-1447
The present paper describes an experimental study on the effect of the compression ratio on the performance of a LD diesel engine operating with a PCCI calibration, near the estimated EURO 6/Tier2 Bin5 NOx emission limits. The research activity is the result of a collaborative project between Istituto Motori and Centro Ricerche Fiat aimed to carry out an exhaustive analysis of the compression ratio (CR) influence on the performance of a LD diesel engine. Starting from a reference engine configuration the CR was reduced in two steps sequentially. Each CR value was characterized under PCCI operation mode and, under conventional diesel operating mode, at maximum torque. The exploration of the PCCI application in the NEDC operating area was performed prefixing limits on maximum fuel consumption, maximum pressure rise and maximum tolerable smoke. The main result was that no significant increment in PCCI application area reducing the CR was possible without overcoming the limits.
Technical Paper

Combustion and Emission Characteristics of a Diesel Engine Fuelled with Diesel-LPG Blends

2019-09-09
2019-24-0038
Recently, it has been worth pointing out the relevance of alternative fuels in the improvement of air quality conditions and in the mitigation of global warming. In order to deal with these demands, in recent studies, it has been considered a great variety of alternative fuels. It goes without saying that the alternative fuels industry needs the best of the efficiency with a moderate layout. From this perspective, Liquefied Petroleum Gas (LPG) could represent a valid option, although it is not a renewable fuel. In terms of polluting emissions, the LPG can reduce nitrous oxides and smoke concentrations in the air, a capability that has a relevant importance for the modern pollution legislation. LPG is well known as an alternative fuel for Spark Ignition (SI) engines and, more recently, LPG systems have also been introduced in the Compression Ignition (CI) engines in dual-fuel configuration.
Technical Paper

Compression Ratio Influence on the Performance of an Advanced Single-Cylinder Diesel Engine Operating in Conventional and Low Temperature Combustion Mode

2008-06-23
2008-01-1678
The present paper describes a detailed experimental analysis on the effect of the compression ratio on the performance of a single-cylinder research diesel engine operating with both conventional combustion and Low Temperature Combustion mode for low NOx emissions. The single-cylinder engine was developed with the same combustion system architecture of the four-cylinder FIAT 1.9 liter Multi-Jet. Starting from an engine configuration with a compression ratio of 16.5, the compression ratio was reduced to 14.5. For both the geometric configurations, engine performance was evaluated in terms of thermodynamic parameters, emissions and fuel consumption in some operating test points representative of the engine behavior running on the NEDC cycle.
Technical Paper

Development of a Dedicated CNG Three-Way Catalyst Model in 1-D Simulation Platforms

2019-09-09
2019-24-0074
A growing interest towards heavy-duty engines powered with NG, dictated by stringent regulations in terms of emissions, has made it essential to study a specific Three-Way Catalyst (TWC). Oxygen storage phenomena characterize the catalytic converter efficiency under real world driving operating conditions and, consequently, during strong dynamics in Air-to-Fuel ratio (AFR). A numerical “quasi-steady” model has been set-up to simulate the chemical process inside the reactor. A dedicated experimental campaign has been performed in order to evaluate the catalyst response to a defined λ variation, thus providing the data necessary for the numerical model validation. In fact, goal of the present research activity was to investigate the effect of very fast composition transitions of the engine exhaust typical of the mentioned driving conditions (including fuel cutoffs etc.) on the catalyst performance and on related emissions.
Technical Paper

Emissive Behavior of a Heavy-Duty SI Gas Engine During WHTC

2019-09-09
2019-24-0121
In the arduous aim to reduce petroleum fuel consumption and toxic emissions, gaseous fuels can represent an alternative solution for heavy duty applications with respect to conventional liquid fuels. At the same time, the imposition of more stringent emission regulations in the transport sector, is a crucial aspect to be taken into account during the development of future gas engines. Aim of the present paper was to characterize a heavy duty spark ignition engine, under development for Euro VI compliance, with a particular focus on exhaust particulate emissions. In this sense, the engine was installed on a dynamic test bench, accurately instrumented to analyze combustion evolution, performance and exhaust pollutant emissions, along the World Harmonized Transient Cycle (WHTC).
Technical Paper

Estimation of TTW and WTW Factors for a Light Duty Dual Fuel NG-Diesel EU5 Passenger Car

2014-04-01
2014-01-1621
An increasing interest in the use of natural gas in CI engines is currently taking place, due to several reasons: it is cheaper than conventional Diesel fuel, permits a significant reduction in the amount of emitted carbon dioxide and is intrinsically cleaner, being much less prone to soot formation. In this respect, the Dual Fuel (DF) concept has already proven to be a viable solution, industrially implemented for several applications in the high duty engines category. Despite this, some issues still require a technological solution, preventing the commercialization of DF engines in wider automotive fields: the release of high amounts of unburned fuel, the risk of engine knock, the possible thermal efficiency reduction are some factors regarding the fuel combustion aspect. DF configuration examined in the present paper corresponds to Port Fuel Injection of natural gas and direct injection of the Diesel Fuel.
Technical Paper

Experimental Analysis of the Operating Parameter Influence on the application of Low Temperature Combustion in the Modern Diesel Engines

2007-07-23
2007-01-1839
The present paper describes the effects of some operating parameters on the performance of a single cylinder research engine when it runs under Low Temperature Combustion (LTC) conditions. Aim of the experimental work was to explore the potential of the control of each parameter on the improvement of LTC application to the modern LD diesel engines for passenger cars. In particular, the effects on LTC performance of the following operating parameters in different engine test points were analyzed: intake air temperature, exhaust EGR cooler temperature, intake pipe pressure, exhaust pipe pressure and swirl ratio. Some parameters have shown a particular influence on the improvement of EGR tolerability for maximum NOx reduction preserving fuel consumption and smoke, while others have evidenced poor sensitivity.
Journal Article

Experimental Evaluation of Compression Ratio Influence on the Performance of a Dual-Fuel Methane-Diesel Light-Duty Engine

2015-09-06
2015-24-2460
The paper reports an experimental study on the effect of compression ratio variation on the performance and pollutant emissions of a single-cylinder light-duty research diesel engine operating in DF mode. The architecture of the combustion system as well as the injection system represents the state-of-the-art of the automotive diesel technology. Two pistons with different bowl volume were selected for the experimental campaign, corresponding to two CR values: 16.5 and 14.5. The designs of the piston bowls were carefully performed with the 3D simulation in order to maintain the same air flow structure at the piston top dead center, thus keeping the same in-cylinder flow characteristics versus CR. The engine tests choice was performed to be representative of actual working conditions of an automotive light-duty diesel engine.
Journal Article

Experimental Investigation of the Benefits of Cooled and Extra-cooled Low-Pressure EGR on a Light Duty Diesel Engine Performance

2009-09-13
2009-24-0126
The present paper describes an experimental study on the application of a Low Pressure EGR system, equipped with an high efficiency cooler, to a LD diesel engine operating with both conventional combustion and PCCI mode. The research activity is aimed to carry out an analysis of the potentiality of the cooling (with engine water at 90°C) and super-cooling (with external water at 20°C) of the low pressure EGR flow gas on the simultaneous reduction of fuel consumption and pollutant emissions. The effects were evaluated running the engine with diesel conventional combustion and PCCI mode in several engine operating points. The employed engine was a 4-cyliders LD CR diesel engine of two liters of displacement at the state of art of the current engine technology. The overall results identified benefits on both the fuel consumption and emissions with the use of a low pressure EGR system with respect to the “classical” high pressure EGR one.
Technical Paper

Experimental and Numerical Analysis of a High-Pressure Outwardly Opening Hollow Cone Spray Injector for Automotive Engines

2017-03-28
2017-01-0840
In the aim of reducing CO2 emissions and fuel consumption, the improvement of the diesel engine performance is based on the optimization of the whole combustion system efficiency. The focus of new technological solutions is devoted to the optimization of thermodynamic efficiency especially in terms of reduction of losses of heat exchange. In this context, it is required a continuous development of the engine combustion system, first of all the injection system and in particular the nozzle design. To this reason in the present paper a new concept of an open nozzle spray was investigated as a possible solution for application on diesel engines. The study concerns some experimental and numerical activities on a prototype of an open nozzle. An external supplier provided the prototypal version of the injector, with a dedicated piezoelectric actuation system, and with an appropriate choice of geometrical design parameters.
X