Refine Your Search

Topic

Search Results

Technical Paper

Virtual NOx sensor for Transient Operation in Light-Duty Diesel Engine

2016-04-05
2016-01-0561
Currently, diesel engine-out exhaust NOx emission level prediction is a major challenge for complying with the stricter emission legislation and for control purpose of the after-treatment system. Most of the NOx prediction research is based on the Zeldovich thermal mechanism, which is reasonable from the physical point of view and for its simplicity. Nevertheless, there are some predictable range limitations, such as low temperature with high EGR rate operating conditions or high temperature with low EGR rates. In the present paper, 3 additional considerations, pilot burned gas mixing before the main injection; major NO formation area; concentration correction, were applied to the previously developed real-time NO estimation model based on in-cylinder pressure and data available from ECU. The model improvement was verified on a 1.6 liter EURO5 diesel engine in both steady and transient operation.
Technical Paper

The Efficiency and Emission Characteristics of Dual Fuel Combustion Using Gasoline Direct Injection and Ethanol Port Injection in an SI Engine

2014-04-01
2014-01-1208
Ethanol, one of the most widely used biofuels, has the potential to increase the knock resistance of gasoline and decrease harmful emissions when blended with gasoline. However, due to the characteristics of ethanol, a trade-off relationship between knock tolerance and BSFC exists which is balanced by the blending ratio of gasoline and ethanol. Furthermore, in a spark-ignited engine, it is reported that the blending ratio that maximizes thermal efficiency varies based on the engine operating conditions. Therefore, an injection system that can deliver gasoline and ethanol separately is needed to fully exploit the benefit of ethanol. In this study, PFI injectors and a DI injector are used to deliver ethanol and gasoline, respectively. Using the dual fuel injection system, the compression ratio was increased from 9.5 to 13.3, and the knock mitigation characteristics at the full load condition were examined.
Technical Paper

The Effects of Spray Angle and Piston Bowl Shape on Diesel Engine Soot Emissions Using 3-D CFD Simulation

2005-05-11
2005-01-2117
In an HSDI Diesel engine, fuel can be injected to the combustion chamber earlier as a strategy to reduce NOx and soot emissions. However, in the case of early injection the in-cylinder pressure and temperature during injection are much lower than those of normal injection conditions. As a result, wall impingement can occur if the conventional spray angle and piston bowl shape are maintained. In this study, 3-D CFD simulation was used to modify the spray angle of the injector and the piston bowl shape so that wall impingement was minimized, and soot emissions were reduced. The wall impingement model was used to simulate the behavior of impinged droplets. In order to predict the performance and emissions of the engine, a flamelet combustion model with the kinetic chemical mechanism for NOx and soot was used. A reduction in soot emissions was achieved with the modification of the spray angle and piston bowl shape.
Technical Paper

The Effects of Crevices on the Engine-Out Hydrocarbon Emissions in SI Engines

1994-03-01
940306
To understand the effects of crevices on the engine-out hydrocarbon emissions, a series of engine experiments was carried out with different piston crevice volumes and with simulated head gasket crevices. The engine-out HC level was found to be modestly sensitive to the piston crevice size in both the warmed-up and the cold engines, but more sensitive to the crevice volume in the head gasket region. A substantial decrease in HC in the cold-to-warm-up engine transition was observed and is attributed mostly to the change in port oxidation.
Technical Paper

The Effect of Liquid Fuel on the Cylinder Liner on Engine-Out Hydrocarbon Emissions in SI Engines

2001-09-24
2001-01-3489
The liquid fuel film on the cylinder liner is believed to be a major source of engine-out hydrocarbon emissions in SI engines, especially during cold start and warm-up period. Quantifying the liquid fuel film on the cylinder liner is essential to understand the engine-out hydrocarbon emissions formation in SI engines. In this research, two-dimensional visualization was carried out to quantify liquid fuel film on the quartz cylinder liner in an SI engine test rig. In addition, comparing visualization results with the trend of hydrocarbon emissions in this engine, the effect of cylinder wall-wetting during a simulated cold start and warmed-up condition was investigated with the engine experiment. The visualization was based on laser-induced fluorescence and total reflection. Using a quartz liner and a special lens, only the liquid fuel on the liner was visualized.
Technical Paper

The Development of Real-time NOx Estimation Model and its Application

2013-04-08
2013-01-0243
To meet the stringent emission regulations on diesel engines, engine-out emissions have been lowered by adapting new combustion concepts such as low-temperature combustion and after-treatment systems have also been used to reduce tailpipe emissions. To optimize the control of both in-cylinder combustion and the efficiency of an after treatment system to reduce NOx, the amount of real-time NOx emissions should be determined. Therefore, in previous studies, the authors developed a real-time NO estimation model based on the in-cylinder pressure and the data available from the ECU during engine operation. The model was evaluated by comparing its results with a CFD model, which agreed well. Then, the model was implemented on an embedded system which allows real-time applications, and was verified on a 2.2-liter diesel engine. The model showed good agreement with the experimental results at various steady-state conditions and simple transient conditions.
Technical Paper

Study on the Effect of Injection Strategies on Particulate Emission Characteristics under Cold Start Using In-cylinder Visualization

2016-04-05
2016-01-0822
Due to the direct injection of fuel into a combustion chamber, particulate emission is a challenge in DISI engines. Specifically, a significant amount of particulate emission is produced under the cold start condition. In this research, the main interest was to investigate particulate emission characteristics under the catalyst heating condition because it is one of the significant particulate-emissionproducing stages under the cold start condition. A single-cylinder optically accessible engine was used to investigate the effect of injection strategies on particulate emission characteristics under the catalyst heating condition. The split injection strategy was applied during intake stroke with various injection pressures and injection timings. Using luminosity analysis of the soot radiation during combustion, the particulate formation characteristics of each injection strategy were studied. Moreover, the factors that affect PM formation were analyzed via fuel injection visualization.
Technical Paper

Study of LES Quality Criteria in a Motored Internal Combustion Engine

2017-03-28
2017-01-0549
In recent years, Large-Eddy Simulation (LES) is spotlighted as an engineering tool and severe research efforts are carried out on its applicability to Internal Combustion Engines (ICEs). However, there is a general lack of definitive conclusions on LES quality criteria for ICE. This paper focuses on the application of LES quality criteria to ICE and to their correlation, in order to draw a solid background on future LES quality assessments for ICE. In this paper, TCC-III single-cylinder optical engine from University of Michigan is investigated and the analysis is conducted under motored condition. LES quality is mainly affected by grid size and type, sub-grid scale (SGS) model, numeric schemes. In this study, the same grid size and type are used in order to focus on the effect on LES quality of SGS models and blending factors of numeric scheme only.
Journal Article

Spray and Combustion Characteristics of Ethanol Blended Gasoline in a Spray Guided DISI Engine under Lean Stratified Operation

2010-10-25
2010-01-2152
An experimental study was performed to evaluate the effects of ethanol blending on to gasoline spray and combustion characteristics in a spray-guided direct-injection spark-ignition engine under lean stratified operation. The spray characteristics, including local homogeneity and phase distribution, were investigated by the planar laser-induced fluorescence and the planar Mie scattering method in a constant volume chamber. Therefore, the single cylinder engine was operated with pure gasoline, 85 %vol, 50 %vol and 25vol % ethanol blended with gasoline (E85, E50, E25) to investigate the combustion and exhaust emission characteristics. Ethanol was identified to have the potential of generating a more appropriate spray for internal combustion due to a higher vapor pressure at high temperature conditions. The planar laser-induced fluorescence image demonstrated that ethanol spray has a faster diffusion velocity and an enhanced local homogeneity.
Technical Paper

Reduced Chemical Kinetic Model of DME for HCCI Combustion

2003-05-19
2003-01-1822
Homogeneous Charge Compression Ignition combustion engines could have a thermal efficiency as high as that of conventional compression-ignition engines and the production of low emissions of ultra-low oxides of NOx and PM. HCCI engines can operate on most alternative fuels, especially, dimethyl ether which has been tested as possible diesel fuel for its simultaneously reduced NOx and PM emissions. However, to adjust HCCI combustion to practical engines, the main problem about the HCCI engine must be solved; control of its ignition timing and burn rate over a range of engine speeds and loads. Detailed chemical kinetic modeling has been used to predict the combustion characteristics. But it is difficult to apply detailed chemical kinetic mechanism to simulate practical engines because of its high complexity coupled with multidimensional fluid dynamic models. Thus, reduced chemical kinetic modeling is desirable.
Technical Paper

Premixed Combustion Modeling in an SI Engine Considering the Burned Gas Composition

2005-05-11
2005-01-2108
Conventional combustion models are suitable for predicting flame propagation for a wrinkled flamelet configuration. But they cannot predict the burned gas composition. This causes the overestimation of burned gas temperature and pressure. A modified method of combustion simulation was established to calculate the chemical composition and to investigate their ultimate fate in the burned gas region. In this work, the secondary products of combustion process, like CO and H2, were considered as well as the primary products like CO2 and H2O. A 3-dimensional CFD program was used to simulate the turbulent combustion and a zero dimensional equilibrium code was used to predict the chemical composition of burned gas. With this simple connection, more reasonable temperature and pressure approaching the real phenomena were predicted without additional time costs.
Technical Paper

Prediction of In-Cylinder Pressure for Light-Duty Diesel Engines

2019-04-02
2019-01-0943
In recent years, emission regulations have been getting increasingly strict. In the development of engines that comply with these regulations, in-cylinder pressure plays a fundamental role, as it is necessary to analyze combustion characteristics and control combustion-related parameters. The analysis of in-cylinder pressure data enables the modelling of exhaust emissions in which characteristic temperature can be derived from the in-cylinder pressure, and the pressure can be used for other investigations, such as optimizing efficiency and emissions through controlling combustion. Therefore, a piezoelectric pressure sensor to measure in-cylinder pressure is an essential element in the engine research field. However, it is difficult to practice the installation of this pressure sensor on all engines and on-road vehicles owing to cost issues.
Technical Paper

Numerical Study on Wall Impingement and Film Formation in Direct-Injection Spark-Ignition Condition

2020-04-14
2020-01-1160
Since the amount of emitted CO2 is directly related to car fuel economy, attention is being drawn to DISI (Direct-Injection Spark-Ignition) engines, which have better fuel economy than conventional gasoline engines. However, it has been a problem that the rich air-fuel mixtures associated with fuel films during cold starts due to spray impingement produce particulate matter (PM). In predicting soot formation, it is important to predict the mixture field precisely. Thus, accurate spray and film models are a prerequisite of the soot model. The previous models were well matched with low-speed collision conditions, such as those of diesel engines, which have a relatively high ambient pressure and long traveling distances. Droplets colliding at low velocities have an order of magnitude of kinetic energy similar to that of the sum of the surface tension energy and the critical energy at which the splash occurs.
Technical Paper

Numerical Investigation of Soot Emission in Direct-Injection Spark-Ignition Engines Using a Detailed Soot Model Framework

2016-04-05
2016-01-0580
The soot emission in direct-injection spark-ignition engines under various operating conditions was numerically investigated in the present study. A detailed soot model was used to resolve the physical soot process that consists of polycyclic aromatics hydrocarbon (PAH) formation and soot particle dynamics. The primary propagating flame in partially-premixed field was described by G-equation model, and the concentrations of burned species as well as PAH behind of the flame front were determined from the laminar flamelet library that incorporates the PAH chemical mechanism. The particle dynamics in post-flame region include nucleation, surface growth, coagulation, and oxidation were modeled by method of moments. To improve the model predictability, a gasoline surrogate model was proposed to match the real fuel properties, and the input of droplet size distribution of fuel spray was obtained from Phase-Doppler Particle Analyzer.
Technical Paper

Numerical Analysis of Pollutant Formation in Direct-Injection Spark-Ignition Engines by Incorporating the G-Equation with a Flamelet Library

2014-04-01
2014-01-1145
Direct-injection spark-ignition (DISI) engines are regarded as a promising technology for the reduction of fuel consumption and improvement of engine thermal efficiency. However, due to direct injection, the shortened fuel-air mixing duration leads to a spatial gradient of the equivalence ratio, and these locally rich regions cause the formation of particulate matter. In the current study, numerical investigations on pollutant formation in a DISI engine were performed using combined flamelet models for premixed and diffusion flames. The G-equation model for partially premixed combustion was improved by incorporating the laminar flamelet library. Gasoline fuel was represented as a ternary mixture of gasoline surrogate and its laminar flame speeds were obtained under a wide range of engine operating conditions.
Technical Paper

New Index for Diagnosis of Abnormal Combustion Using a Crankshaft Position Sensor in a Diesel Engine

2019-04-02
2019-01-0720
Most research of internal combustion engine focuses on improving the fuel economy and reducing exhaust emissions to satisfy regulations and marketability. Engine combustion is a key factor in determining engine performance. Generally, engine operating parameters are optimized for the best performance and less exhaust emissions. However, abnormal combustion results in engine conditions that are far from an optimized operation. Abnormal combustion, including a misfire, can happen for a variety of reasons, such as superannuated vehicles, extreme changes in the driving environment, etc. Abnormal combustion causes serious deterioration of not only noise, vibration and harshness (NVH), but also the fuel economy and exhaust emission. NVH stands for unwanted noise, vibration and harshness from the vehicle. The misfiring especially deteriorates vehicle comfortability. Abnormal combustion at one cylinder breaks the exciting force balance between cylinders and causes unexpected vibration.
Technical Paper

Modeling of Unburned Hydrocarbon Oxidation in Engine Conditions using Modified One-step Reaction Model

2007-08-05
2007-01-3536
Modeling of unburned hydrocarbon oxidation in an SI engine was performed in engine condition using modified one-step oxidation model. The new one-step equation was developed by modifying the Arrhenius reaction rate coefficients of the conventional one-step model. The modified model was well matched with the results of detailed chemical reaction mechanism in terms of 90 % oxidation time of the fuel. In this modification, the effect of pressure and intermediate species in the burnt gas on the oxidation rate investigated and included in developed one-step model. The effect of pressure was also investigated and included as an additional multiplying factor in the reaction equation. To simulate the oxidation process of piston crevice hydrocarbons, a computational mesh was constructed with fine mesh density at the piston crevice region and the number of cell layers in cylinder was controlled according to the motion of piston.
Technical Paper

Modeling of Combustion Process of Multiple Injection in HSDI Diesel Engines using Modified Two-Dimensional Flamelet

2007-09-16
2007-24-0042
Ignition delay of the second injection of HSDI diesel engines is generally much shorter than that of the first injection because of the interaction between the radicals generated during the combustion process and the mixed gas of the second injection. Although previous Diesel combustion models could not explain this reaction, Hasse and Peters described the mass and heat transfer of the second injection and estimated the ignition delay of the second injection using two-dimensional flamelet equations. But a simulation of the two-dimensional flamelet equations requires enormous computational time. Thus, to analyze the combustion phenomena of the multiple injection mode in HSDI diesel engines effectively, the two-dimensional flamelet combustion model was modified in this study. To reduce the calculation time, two-dimensional flamelet equations were only applied near the stoichiometric region.
Technical Paper

Measurements and Modeling of Residual Gas Fraction in SI Engines

2001-05-07
2001-01-1910
The residual gas in SI engines is one of important factors on emission and performance such as combustion stability. With high residual gas fractions, flame speed and maximum combustion temperature are decreased and there are deeply related with combustion stability, especially at Idle and NOx emission at relatively high engine load. Therefore, there is a need to characterize the residual gas fraction as a function of the engine operating parameters. A model for predicting the residual gas fraction has been formulated in this paper. The model accounts for the contribution due to the back flow of exhaust gas to the cylinder during valve overlap and it includes in-cylinder pressure prediction model during valve overlap. The model is derived from the one dimension flow process during overlap period and a simple ideal cycle model.
Technical Paper

Investigation of Sub-Grid Model Effect on the Accuracy of In-Cylinder LES of the TCC Engine under Motored Conditions

2017-09-04
2017-24-0040
The increasing interest in the application of Large Eddy Simulation (LES) to Internal Combustion Engines (hereafter ICEs) flows is motivated by its capability to capture spatial and temporal evolution of turbulent flow structures. Furthermore, LES is universally recognized as capable of simulating highly unsteady and random phenomena driving cycle-to-cycle variability (CCV) and cycle-resolved events such as knock and misfire. Several quality criteria were proposed in the recent past to estimate LES uncertainty: however, definitive conclusions on LES quality criteria for ICEs are still far to be found. This paper describes the application of LES quality criteria to the TCC-III single-cylinder optical engine from University of Michigan and GM Global R&D; the analyses are carried out under motored condition.
X