Refine Your Search

Search Results

Viewing 1 to 18 of 18
Technical Paper

Spectroscopic Study of Two-Stage High Temperature Heat Release Behavior in a Supercharged HCCI Engine using Blended Fuels

2011-08-30
2011-01-1788
This study examined the effects of fuel composition and intake pressure on two-stage high temperature heat release characteristics of a Homogeneous Charge Compression Ignition (HCCI) engine. Light emission and absorption spectroscopic measurement techniques were used to investigate the combustion behavior in detail. Chemical kinetic simulations were also conducted to analyze the reaction mechanisms in detail. Blended fuels of dimethyl ether (DME) and methane were used in the experiments. It was found that the use of such fuel blends together with a suitable intake air flow rate corresponding to the total injected heat value gave rise to two-stage heat release behavior of the hot flame, which had the effect of moderating combustion. The results of the spectroscopic measurements and the chemical kinetic simulations revealed that the main reaction of the first stage of the hot flame heat release was one that produced CO from HCHO.
Technical Paper

Simultaneous Measurement of Light Emission and Absorption Behavior of Unburned Gas During Knocking Operation

1993-10-01
932754
With the aim of elucidating the mechanism generating knock, an examination was made of the preflame reaction behavior of end gas in the combustion chamber in the transition from normal combustion to abnormal combustion characterized by the occurrence of knocking. Simultaneous measurements were made in the same cycle of the light absorption and emission behavior of the OH (characteristic spectrum of 306.4 nm), CH (431.5 nm) and C2 (516.5 nm) radicals in the end-gas region using spectroscopic methods. The absorbance behavior of a blue flame prior to autoignition is believed to be an important factor in the mechanism causing knock.
Technical Paper

Light Emission and Absorption Spectroscopic Study of HCCI Combustion

2009-06-15
2009-01-1846
In this study, light emission and absorption spectroscopic measurement techniques were used to investigate the Homogeneous Charge Compression Ignition (HCCI) combustion process in detail, about which there have been many unclear points heretofore. The results made clear the formation behavior and wavelength bands of the chemical species produced during low-temperature reactions. Specifically, with a low level of residual gas, a light emission band was observed from a cool flame in a wavelength range of 370–470 nm. That is attributed to the light emission of formaldehyde (HCHO) produced in the cool-flame reactions. Additionally, it was found that these light emission spectra were no longer observable when residual gas was applied. The light emission spectra of the combustion flame thus indicated that residual gas has the effect of moderating cool-flame reactions.
Technical Paper

Influences of Compression Ratio and Methane Additive on Combustion Characteristics in a DME-HCCI Engine

2005-10-24
2005-01-3745
In this study, a spectroscopic method was used to measure the combustion characteristics of a test diesel engine when operated on dimethyl ether (DME) under a homogenous charge compression ignition (HCCI) combustion process. A numerical analysis was made of the elementary reactions using Chemkin 4.0 to perform the calculations. The results of the analysis showed that compression ratio changes and the methane additive influenced the autoignition timing in the DME-HCCI combustion process. In the experiments, reducing the compression ratio delayed the time of the peak cylinder pressure until after top dead center, thereby increasing the crankshaft output and thermal efficiency. The addition of methane enabled the DME-HCCI engine to provide crankshaft output equivalent to that seen for diesel engine operation at a low equivalence ratio. This paper discusses these effects in reference to the experimental and calculated results.
Technical Paper

Influence of the Characteristic Length on Performance of Plasma Jet Igniters

1994-10-01
942051
The investigation regarding performance of plasma jet igniters was explored by using a constant volume vessel. This study focused on investigating the relationship between the jet effect, the hot gas jet issued from the igniter, and combustion enhancement. The hot gas penetration was visualized by the schlieren system with CCD camera and image intensifier. In the cases of small energies, 0.63 and 0.90 J, the combustion enhancement effect is similar to that of combustion jet igniter. In cases of supplied energies, 2.45 and 5.00 J, the jet effect influences on the combustion enhancement effect for small characteristic length of the igniter.
Technical Paper

Influence of Various Biodiesel Fuels on Diesel Engine Performance

2009-11-03
2009-32-0100
The composition ratio of saturated and unsaturated fatty acid methyl esters (FAME) is depended on feedstock. Three FAMEs: soybean (SME), palm (PME) and coconut oil (CME) methyl esters were mixed to make fuels which have different composition ratio. The ignitability of fuel which mainly consisted of unsaturated FAME was inferior. Power was slightly reduced with increasing of mixing ratio of CME; however exhaust gas emissions were improved because CME contained a lot of oxygen atoms. Fuel which was equal mixture SME and CME indicated almost the same ignition characteristic as that of PME because they have same composition ratio.
Technical Paper

Experimental and Numerical Study of HCCI Combustion using Cooled EGR

2015-11-17
2015-32-0770
Unresolved issues of Homogeneous Charge Compression Ignition (HCCI) combustion include an extremely rapid pressure rise on the high load side and resultant knocking. Studies conducted to date have examined ways of expanding the region of stable HCCI combustion on the high load side such as by applying supercharging or recirculating exhaust gas (EGR). However, the effect of applying EGR gas to supercharged HCCI combustion and the mechanisms involved are not fully understood. In this study, the effect of EGR gas components on HCCI combustion was investigated by conducting experiments in which external EGR gas was applied to supercharged HCCI combustion and also experiments in which nitrogen (N2) and carbon dioxide (CO2) were individually injected into the intake air pipe to simulate EGR gas components. In addition, HCCI combustion reactions were analyzed by conducting chemical kinetic simulations under the same conditions as those of the experiments.
Technical Paper

Effect of EGR-Induced Hot Residual Gas on Combustion when Operating a Two-Stroke Engine on Alcohol Fuels

2000-10-16
2000-01-2972
In this research, the effect of high-temperature residual gas, resulting from the application of a certain level of EGR, on combustion was investigated using a two-stroke engine and alcohol fuels (ethanol and methanol) and gasoline as the test fuels. Measurements were made of the light emission intensity of the OH radical on the intake and exhaust port sides of the combustion chamber and of the combustion chamber wall temperature (spark plug washer temperature) and the exhaust gas temperature. Data were measured and analyzed in a progression from normal combustion to autoignited combustion to preignition and to knocking operation.
Technical Paper

Analysis of the Combustion Characteristics of a HCCI Engine Operating on DME and Methane

2007-10-30
2007-32-0041
The Homogeneous Charge Compression Ignition (HCCI) engine has attracted much interest in recent years because it can simultaneously achieve high efficiency and low emissions. However, it is difficult to control the ignition timing with this type of engine because it has no physical ignition mechanism. Varying the amount of fuel supplied changes the operating load and the ignition timing also changes simultaneously. The HCCI combustion process also has the problem that combustion proceeds too rapidly. This study examined the possibility of separating ignition timing control and load control using an HCCI engine that was operated on blended test fuels of dimethyl ether (DME) and methane, which have vastly different ignition characteristics. The influence of the mixing ratios of these two test fuels on the rapidity of combustion was also investigated.
Technical Paper

Analysis of the Characteristics of HCCI Combustion and ATAC Combustion Using the Same Test Engine

2004-09-27
2004-32-0097
Homogeneous Charge Compression Ignition (HCCI) combustion has attracted considerable interest in recent years as a new combustion concept for internal combustion engines. On the other hand, two combustion concepts proposed for two-cycle spark-ignition (SI) engines are Active Thermo-Atmosphere Combustion (ATAC) and Activated Radical (AR) combustion. The authors undertook this study to examine the similarities and differences between HCCI combustion and ATAC (AR) combustion. Differences in the low-temperature oxidation reaction behavior between these two combustion processes were made clear using one test engine.
Technical Paper

Analysis of Supercharged HCCI Combustion Using Low-Carbon Alternative Fuels

2017-11-05
2017-32-0085
This study investigated the effects of recirculated exhaust gas (EGR) and its principal components of N2, CO2 and H2O on moderating Homogeneous Charge Compression Ignition (HCCI) combustion. Experiments were conducted using two types of gaseous fuel blends of DME/propane and DME/methane as the test fuels. The addition rates of EGR, N2, CO2 and H2O were varied and the effects of each condition on HCCI combustion of propane and methane were investigated. The results revealed that the addition of CO2 and H2O had the effect of substantially delaying and moderating rapid combustion. The addition of N2 showed only a slight delaying and moderating effect. The addition of EGR had the effect of optimally delaying the combustion timing, while either maintaining or increasing the indicated mean effective pressure and indicated thermal efficiency ηi.
Journal Article

Analysis of Combustion Characteristics and Efficiency Improvement of a Supercharged HCCI Engine Achieved by Using the Different Ignition Characteristics of Gaseous Fuels

2012-10-23
2012-32-0075
This study focused on the use of a two-component fuel blend and supercharging as possible means of overcoming these issues of HCCI combustion. Low-carbon gaseous fuels with clean emissions were used as the test fuels. The specific fuels used were dimethyl ether (DME, cetane number of 55 or higher) that autoignites easily And exhibits pronounced low-temperature oxidation reactions, methane (cetane number of 0) that does not autoignite readily and is the main component of natural gas which is regarded as petroleum substitute, and propane (cetane number of 5) that is a principal component of liquefied petroleum gas. The results of previous investigations have shown that the use of a blended fuel of DME and methane produces a two-stage main combustion process under certain operating conditions, with the result that combustion is moderated.
Technical Paper

An Experimental Study Concerning the influence of Hot Residual Gas On Combustion

2000-01-15
2000-01-1419
This research focused on the light emission behavior of the OH radical (characteristic spectrum of 306.4 [nm]) that plays a key role in combustion reactions, in order to investigate the influence of the residual gas on autoignition. Authors also analyzed on the heat release and thermodynamic mean temperature due to research activity state of unburned gas. The test engine used was a 2-stroke, air-cooled engine fitted with an exhaust pressure control valve in the exhaust manifold. Raising the exhaust pressure forcibly recirculated more exhaust gas internally. When a certain level of internal EGR is forcibly applied, the temperature of the unburned end gas is raised on account of heat transfer from the hot residual gas and also due to compression by piston motion. As a result, the unburned end gas becomes active and autoignition tends to occur.
Technical Paper

An Analysis of Conditions Producing Two-Stage Main Combustion Heat Release in a Supercharged HCCI Engine using a Gaseous Fuel Blend

2015-09-01
2015-01-1785
In this study, a detailed analysis was made of supercharged HCCI combustion using a two-component fuel blend of dimethyl ether (DME), which has attracted interest as a potential alternative fuel, and methane. The quantity of fuel injected and boost pressure were varied to investigate the equivalence ratio and operating region conducive to optimal HCCI combustion. The results revealed that varying the boost pressure according to the engine load and applying a suitable equivalence ratio induced two-stage main combustion over a wide load range, making it possible to avoid excessively rapid combustion.
Technical Paper

A Study of the Mechanism Producing Autoignition in an HCCI Engine Using In-Cylinder Spectroscopy and Chemical Kinetic Simulation

2012-10-23
2012-32-0079
This study examined Homogeneous Charge Compression Ignition (HCCI) combustion characteristics in detail on the basis of in-cylinder combustion visualization, spectroscopic measurements of light emission and absorption and chemical kinetic simulations. Special attention was focused on investigating and comparing the effects of the fuel octane number and residual gas on combustion characteristics. The results made clear the relationship between the production/consumption of formaldehyde (HCHO) in the HCCI autoignition process and flame development behavior in the cylinder. Additionally, it was found that both the fuel octane number and residual gas have the effect of moderating low-temperature oxidation reactions. Furthermore, it was observed that residual gas has the effect of shifting the temperature for the occurrence of the hot flame to a higher temperature range.
Journal Article

A Study of an HCCI Engine Operating on a Blended Fuel of DME and Methane

2011-11-08
2011-32-0522
In this study, experiments were conducted using a blend of two types of fuel with different ignition characteristics. One was dimethyl ether (DME) that has a high cetane number, autoignites easily and displays low-temperature oxidation reaction mechanisms; the other was methane that has a cetane number of zero and does not autoignite easily. A mechanically driven supercharger was provided in the intake pipe to adjust the intake air pressure. Moreover, flame light in the combustion chamber was extracted using a system for observing light emission that occurred in the space between the cylinder head and the cylinder and in the bore direction of the piston crown. The results of previous studies conducted with a supercharged HCCI engine and a blended fuel of DME and methane have shown that heat release of the hot flame is divided into two stages and that combustion can be moderated by reducing the peak heat release rate (HRR).
Technical Paper

A Study of HCCI Operating Range Expansion by Applying Reaction Characteristics of Low-Carbon Alternative Fuels

2016-11-08
2016-32-0011
Issues that must be addressed to make Homogeneous Charge Compression Ignition (HCCI) engines a practical reality include the difficulty of controlling the ignition timing and suppression of rapid combustion under high load conditions. Overcoming these issues to make HCCI engines viable for practical application is indispensable to the further advancement of internal combustion engines. Previous studies have reported that the operating region of HCCI combustion can be expanded by using DME and Methane blended fuels.(1), (2), (3), (4), (5) The reason is that the reaction characteristics of these two low-carbon fuels, which have different ignition properties, have the effect of inducing heat release in two stages during main combustion, thus avoiding excessively rapid combustion. However, further moderation of rapid combustion in high-load region is needed to expand the operation region. This study focused on supercharging and use of blended fuels.
Journal Article

A Study of HCCI Combustion using Spectroscopic Techniques and Chemical Kinetic Simulations

2009-11-03
2009-32-0070
This study was conducted to investigate the influence of low-temperature reactions on the Homogeneous Charge Compression Ignition (HCCI) combustion process. Specifically, an investigation was made of the effect of the residual gas condition on low-temperature reactions, autoignition and the subsequent state of combustion following ignition. Light emission and absorption spectroscopic measurements were made in the combustion chamber in order to investigate low-temperature reactions in detail. In addition, chemical kinetic simulations were performed to validate the experimental results and to analyze the elemental reaction process. The results made clear the formation behavior of the chemical species produced during low-temperature HCCI reactions.
X