Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Computational Study on the Impact of Cycle-to-Cycle Combustion Fluctuations on Fuel Consumption and Knock in Steady-State and Drivecycle Operation

2013-09-08
2013-24-0030
In spark-ignition engines, fluctuations of the in-cylinder pressure trace and the apparent rate of heat release are usually observed from one cycle to another. These Cycle-to-Cycle Variations (CCV) are affected by the early flame development and the subsequent flame front propagation. The CCV are responsible for engine performance (e.g. fuel consumption) and the knock behavior. The occurrence of the phenomena is unpredictable and the stochastic nature offers challenges in the optimization of engine control strategies. In the present work, CCV are analyzed in terms of their impact on the engine knock behavior and the related efficiency. Target is to estimate the possible fuel consumption savings in steady-state operation and in the drivecycle, when CCV are reduced. Since CCV are immanent on real engines, such a study can only be done by means of simulation.
Technical Paper

A Correlation Methodology between AVL Mean Value Engine Model and Measurements with Concept Analysis of Mean Value Representation for Engine Transient Tests

2017-09-04
2017-24-0053
The use of state of the art simulation tools for effective front-loading of the calibration process is essential to support the additional efforts required by the new Real Driving Emission (RDE) legislation. The process needs a critical model validation where the correlation in dynamic conditions is used as a preliminary insight into the bounds of the representation domain of engine mean values. This paper focuses on the methodologies for correlating dynamic simulations with emissions data measured during dynamic vehicle operation (fundamental engine parameters and gaseous emissions) obtained using dedicated instrumentation on a diesel vehicle, with a particular attention for oxides of nitrogen NOx specie. This correlation is performed using simulated tests run within AVL’s mean value engine and engine aftertreatment (EAS) model MoBEO (Model Based Engine Optimization).
Technical Paper

A Model-Based Analysis on Size Distribution and Rate of Evaporation for Fuel Drops in a Gasoline Spray in the Engine

2012-04-16
2012-01-1264
Good understanding of fuel sprays in the engine cylinder is crucial to optimizing the operation of direct injection gasoline engines. In this paper, a detailed analysis is conducted on direct gasoline injection sprays from a multi-hole injector. Penetrations and angles of the sprays are characterized with a homogeneous model for the fuel spray. The drop size distributions in the sprays are analyzed using an empirical distribution model. Predicted spray penetrations, spray angles, and drop size distributions under three different injection pressures are compared with the measurements for injection pressures = 40, 100 and 150 bar and good agreements are observed. Transient evaporation rates are also studied for fuel drops in an environment simulating the cylinder condition during the intake stroke of a direct injection gasoline engine.
Technical Paper

A Rankine Cycle System for Recovering Waste Heat from HD Diesel Engines - WHR System Development

2011-04-12
2011-01-0311
Waste heat recovery (WHR) has been recognized as a promising technology to achieve the fuel economy and green house gas reduction goals for future heavy-duty (HD) truck diesel engines. A Rankine cycle system with ethanol as the working fluid was developed at AVL Powertrain Engineering, Inc. to investigate the fuel economy benefit from recovering waste heat from a 10.8L HD truck diesel engine. Thermodynamic analysis on this WHR system demonstrated that 5% fuel saving could be achievable. The fuel economy benefit can be further improved by optimizing the design of the WHR system components and through better utilization of the available engine waste heat. Although the WHR system was designed for a stand-alone system for the laboratory testing, all the heat exchangers were sized such that their heat transfer areas are equivalent to compact heat exchangers suitable for installation on a HD truck diesel engine.
Technical Paper

A Real-Time Capable and Modular Modeling Concept for Virtual SI Engine Development

2020-04-14
2020-01-0577
Spark Ignited (SI) combustions engines in combination with different degrees of hybridization are expected to play a major role in future vehicle propulsion. Due to the combustion principle and the related thermodynamic efficiency, it is especially challenging to meet future CO2 targets. The layout and optimization of the overall system requires novel methods in the development process which feature a seamless transition between real and virtual prototypes. Herein, engine models need to predict the entire engine operating range in steady-state and transient conditions and must respond to all relevant control inputs. In addition, the model must feature true real-time capability. This work presents a holistic and modular modeling framework, which considers all relevant processes in the complex chain of physical effects in SI combustion.
Technical Paper

A Scalable Simulation Method for the Assessment of Cycle-to-Cycle Combustion Variations and their impact on Fuel Consumption and Knock

2015-01-14
2015-26-0213
In the present work, a scalable simulation methodology is presented that enables the assessment of the impact of SI-engine cycle-to-cycle combustion variations on fuel consumption and hence CO2 emissions on three different levels of modeling depth: in-cylinder, steady-state engine and transient engine and vehicle simulation. On the detailed engine combustion chamber level, a 3D-CFD approach is used to study the impact of the turbulent in-cylinder flow on the cycle-resolved flame propagation characteristics. On engine level, cycle-to-cycle combustion variations are assessed regarding their impact on indicated mean effective pressure, aiming at estimating the possible fuel consumption savings when cyclic variations are minimized. Finally, on the vehicle system level, a combined real-time engine approach with crank-angle resolved cylinder is used to assess the potential fuel consumption savings for different vehicle drivecycle conditions.
Journal Article

A Thermodynamic Model for a Single Cylinder Engine with Its Intake/Exhaust Systems Simulating a Turbo-Charged V8 Diesel Engine

2011-04-12
2011-01-1149
In this paper, a thermodynamic model is discussed for a single cylinder diesel engine with its intake and exhaust systems simulating a turbo-charged V8 diesel engine. Following criteria are used in determination of the gas exchange systems of the single cylinder engine (SCE): 1) the level of pressure fluctuations in the intake and exhaust systems should be within the lower and upper bounds of those simulated by the thermodynamic model for the V8 engine and patterns of the pressure waves should be similar; 2) the intake and exhaust flows should be reasonably close to those of the V8 engine; 3) the cylinder pressures during the combustion and gas exchange should be reasonably close to those of the V8 engine under the same conditions for the valve timing, fuel injection, rate of heat release and in-cylinder heat transfer. The thermodynamic model for the SCE is developed using the 1D engine thermodynamic simulation tool AVL BOOST.
Technical Paper

A holistic Development Method Based on AVL FRISC as Enabler for CO2 Reduction with Focus on Low Viscosity Oils

2020-04-14
2020-01-1060
To achieve future fleet CO2 emission targets, all powertrain types, including those with internal combustion engines, need to achieve higher efficiency. Next to others the reduction of friction is one contributor to increase powertrain efficiency. The piston bore interface (PBI) accounts for up to 50 % of the total engine friction losses [1]. Optimizations in this area combined with the use of low viscosity oil, which can reduce the friction of further engine sub-systems, will therefore have a high positive impact. To assess the friction of the PBI whilst considering cross effects of other relevant parameters for mechanical function (e.g. blow-by & wear) and emissions (e.g. oil consumption) AVL has established a holistic development method based around the AVL FRISC (FRIction Single Cylinder) engine with a floating liner measurement concept.
Technical Paper

An Experimental Study of Injection and Combustion with Dimethyl Ether

2015-04-14
2015-01-0932
DiMethyl Ether (DME) has been known to be an outstanding fuel for combustion in diesel cycle engines for nearly twenty years. DME has a vapour pressure of approximately 0.5MPa at ambient temperature (293K), thus it requires pressurized fuel systems to keep it in liquid state which are similar to those for Liquefied Petroleum Gas (mixtures of propane and butane). The high vapour pressure of DME permits the possibility to optimize the fuel injection characteristic of direct injection diesel engines in order to achieve a fast evaporation and mixing with the charged gas in the combustion chamber, even at moderate fuel injection pressures. To understand the interrelation between the fuel flow inside the nozzle spray holes tests were carried out using 2D optically accessed nozzles coupled with modelling approaches for the fuel flow, cavitation, evaporation and the gas dynamics of 2-phase (liquid and gas) flows.
Technical Paper

An Investigation into the Effect of Fuel Injection System Improvements on the Injection and Combustion of DiMethyl Ether in a Diesel Cycle Engine

2014-10-13
2014-01-2658
For nearly twenty years, DiMethyl Ether has been known to be an outstanding fuel for combustion in diesel cycle engines. Not only does it have a high Cetane number, it burns absolutely soot free and produces lower NOx exhaust emissions than the equivalent diesel. However, the physical properties of DME such as its low viscosity, lubricity and bulk modulus have negative effects for the fuel injection system, which have both limited the achievable injection pressures to about 500 bar and DME's introduction into the market. To overcome some of these effects, a common rail fuel injection system was adapted to operate with DME and produce injection pressures of up to 1000 bar. To understand the effect of the high injection pressure, tests were carried out using 2D optically accessed nozzles. This allowed the impact of the high vapour pressure of DME on the onset of cavitation in the nozzle hole to be assessed and improve the flow characteristics.
Journal Article

An Overview of the Effects of Ethanol-Gasoline Blends on SI Engine Performance, Fuel Efficiency, and Emissions

2013-04-08
2013-01-1635
This paper provides an overview of the effects of blending ethanol with gasoline for use in spark ignition engines. The overview is written from the perspective of considering a future ethanol-gasoline blend for use in vehicles that have been designed to accommodate such a fuel. Therefore discussion of the effects of ethanol-gasoline blends on older legacy vehicles is not included. As background, highlights of future emissions regulations are discussed. The effects on fuel properties of blending ethanol and gasoline are described. The substantial increase in knock resistance and full load performance associated with the addition of ethanol to gasoline is illustrated with example data. Aspects of fuel efficiency enabled by increased ethanol content are reviewed, including downsizing and downspeeding opportunities, increased compression ratio, fundamental effects associated with ethanol combustion, and reduced enrichment requirement at high speed/high load conditions.
Journal Article

Analysis of Thermodynamic Characteristics of Diesel Engine Emission Control Strategies Using a Multi-Zone Combustion Model

2012-04-16
2012-01-1340
The paper describes a zero-dimensional crank angle resolved combustion model which was developed for the analysis and prediction of combustion in compression ignition (CI) engines. The model relies on the multi zone combustion model (MZCM) approach of Hiroyasu. The main sub-models were taken from literature and extended with additional features described in this paper. A special procedure described in a previous paper is used to identify the mechanisms of the combustion process on the basis of the measured cylinder pressure trace. Based on the identified mechanisms the present work concentrates on the analysis of the causal effects that predominantly control the combustion process and the formation of NOx and Soot. The focus lies on the changes of the thermodynamic states and the composition of the reaction zones caused by different emission control strategies.
Technical Paper

Analytical Techniques for Engine Structure Using Prediction of Radiated Noise of Diesel Engine with Changing Combustion Excitation

2017-06-05
2017-01-1802
In the automotive industry, various simulation-based analysis methods have been suggested and applied to reduce the time and cost required to develop the engine structure to improve the NVH performance of powertrain. This simulation is helpful to set the engine design concept in the initial phase of the powertrain development schedules. However, when using the conventional simulation method with a uniformed force, the simulation results sometimes show different results than the test results. Therefore, in this paper, we propose a method for predicting the radiated noise level of a diesel engine using actual combustion excitation force. Based on the analytical radiated noise development target, we identify the major components of the engine that are beyond this development target by in the frequency range. The components of the problem found in this way are reflected in the engine design of the early development stage to shorten the development time.
Technical Paper

Assessment of a Multi Zone Combustion Model for Analysis and Prediction of CI Engine Combustion and Emissions

2011-04-12
2011-01-1439
The paper describes a universally structured simulation platform which is used for the analysis and prediction of combustion in compression ignition (CI) engines. The models are on a zero-dimensional crank angle resolved basis as commonly used for engine cycle simulations. This platform represents a kind of thermodynamic framework which can be linked to single and multi zone combustion models. It is mainly used as work environment for the development and testing of new models which thereafter are implemented to other codes. One recent development task focused on a multi zone combustion model which corresponds to the approach of Hiroyasu. This model was taken from literature, extended with additional features described in this paper, and implemented into the thermodynamic simulation platform.
Technical Paper

Automated Calibration for Transmission on Powertrain Dynamometers

2015-04-14
2015-01-1625
Today, OEMs are challenged with an increasing number of powertrain variants and complexity of controls software. They are facing internal pressure to provide mature and refined calibrations earlier in the development process. Until now, it was difficult to respond to these requests as the drivability's calibration tasks are mostly done in vehicles. This paper describes a new methodology designed to answer these challenges by performing automated shift quality calibration prior to the availability of vehicles. This procedure is using a powertrain dynamometer coupled with a real-time vehicle dynamics model. By using a Power Train Test Bed (PTTB), a physical vehicle is not required. As soon as the vehicle dynamics model and its parameters have been defined, it can be simulated on the PTTB and drivability calibrations can be developed. A complete powertrain is coupled with low inertia and highly dynamic dynamometers.
Technical Paper

Automated EMS Calibration using Objective Driveability Assessment and Computer Aided Optimization Methods

2002-03-04
2002-01-0849
Future demands regarding emissions, fuel consumption and driveability lead to complex engine and power train control systems. The calibration of the increasing number of free parameters in the ECU's contradicts the demand for reduced time in the power train development cycle. This paper will focus on the automatic, unmanned closed loop optimization of driveability quality on a high dynamic engine test bed. The collaboration of three advanced methods will be presented: Objective real time driveability assessment, to predict the expected feelings of the buyers of the car Automatic computer assisted variation of ECU parameters on the basis of statistical methods like design of experiments (DoE). Thus data are measured in an automated process allowing an optimization based on models (e.g. neural networks).
Technical Paper

Automated Model-Based Calibration for Drivability Using a Virtual Engine Test Cell

2015-04-14
2015-01-1628
Increasing powertrain complexity and the growing number of vehicle variants are putting a strain on current calibration development processes. This is particularly challenging for vehicle drivability calibration, which is traditionally completed late in the development cycle, only after mature vehicle hardware is available. Model-based calibration enables a shift in development tasks from the real world to the virtual world, allowing for increased system robustness while reducing development costs and time. A unique approach for drivability calibration was developed by incorporating drivability analysis software with online optimization software into a virtual engine test cell environment. Real-time, physics-based engine and vehicle simulation models were coupled with real engine controller hardware and software to execute automated drivability calibration within this environment.
Technical Paper

Automatic ECU-Calibration - An Alternative to Conventional Methods

1993-03-01
930395
Due to increasing complexity of engine electronic systems, there is a demand to handle the often more than 10,000 calibration data automatically. Establishing optimized start of injection and EGR tables of a TC DI Diesel engine by conventional methods takes about two weeks of intensive calibration work. By automatic map calibration, this task can be handled in less than 20 hours automatically, with no staff required during optimization. The benefits of automatic calibration therefore are reduced costs and faster response to any changes in parameters, even with complex multidimensional engine calibration problems. The paper describes the optimization method as well as the experimental work on the test stand that produces the results.
Journal Article

Blowdown Interference on a V8 Twin-Turbocharged Engine

2011-04-12
2011-01-0337
The exhaust blowdown pulse from each cylinder of a multi-cylinder engine propagates through the exhaust manifold and can affect the in-cylinder pressure of other cylinders which have open exhaust valves. Depending on the firing interval between cylinders connected to the same exhaust manifold, this blowdown interference can affect the exhaust stroke pumping work and the exhaust pressure during overlap, which in turn affects the residual fraction in those cylinders. These blowdown interference effects are much greater for a turbocharged engine than for one which is naturally aspirated because the volume of the exhaust manifolds is minimized to improve turbocharger transient response and because the turbines restrict the flow out of the manifolds. The uneven firing order (intervals of 90°-180°-270°-180°) on each bank of a 90° V8 engine causes the blowdown interference effects to vary dramatically between cylinders.
Journal Article

CO2 Reduction Potential through Improved Mechanical Efficiency of the Internal Combustion Engine: Technology Survey and Cost-Benefit Analysis

2013-04-08
2013-01-1740
The need for significant reduction of fuel consumption and CO₂ emissions has become the major driver for development of new vehicle powertrains today. For the medium term, the majority of new vehicles will retain an internal combustion engine (ICE) in some form. The ICE may be the sole prime mover, part of a hybrid powertrain or even a range extender; in every case potential still exists for improvement in mechanical efficiency of the engine itself, through reduction of friction and of parasitic losses for auxiliary components. A comprehensive approach to mechanical efficiency starts with an analysis of the main contributions to engine friction, based on a measurement database of a wide range of production engines. Thus the areas with the highest potential for improvement are identified. For each area, different measures for friction reduction may be applicable with differing benefits.
X