Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Characteristic Parameter to Estimate the Optimum Counterweight Mass of a 4-Cylinder In-Line Engine

2002-03-04
2002-01-0486
A dimensionless relationship that estimates the maximum bearing load of a 4-cylinder 4-stroke in-line engine has been found. This relationship may assist the design engineer in choosing a desired counterweight mass. It has been demonstrated that: 1) the average bearing load increases with engine speed and 2) the maximum bearing load initially decreases with engine speed, reaches a minimum, then increases quickly with engine speed. This minimum refers to a transition speed at which the contribution of the inertia force overcomes the contribution of the maximum pressure force to the maximum bearing load. The transition speed increases with an increase of counterweight mass and is a function of maximum cylinder pressure and the operating parameters of the engine.
Technical Paper

A Co-Simulation Environment for Virtual Prototyping of Ground Vehicles

2007-10-30
2007-01-4250
The use of virtual prototyping early in the design stage of a product has gained popularity due to reduced cost and time to market. The state of the art in vehicle simulation has reached a level where full vehicles are analyzed through simulation but major difficulties continue to be present in interfacing the vehicle model with accurate powertrain models and in developing adequate formulations for the contact between tire and terrain (specifically, scenarios such as tire sliding on ice and rolling on sand or other very deformable surfaces). The proposed work focuses on developing a ground vehicle simulation capability by combining several third party packages for vehicle simulation, tire simulation, and powertrain simulation. The long-term goal of this project consists in promoting the Digital Car idea through the development of a reliable and robust simulation capability that will enhance the understanding and control of off-road vehicle performance.
Technical Paper

A Comparative Study on Fatigue Damage of Caldie™ from Different Manufacturing Routes

2022-03-29
2022-01-0245
In automotive body manufacturing the dies for blanking/trimming/piercing are under most severe loading condition involving high contact stress at high impact loading and large number of cycles. With continuous increase in sheet metal strength, the trim die service life becomes a great concern for industries. In this study, competing trim die manufacturing routes were compared, including die raw materials produced by hot-working (wrought) vs. casting, edge-welding (as repaired condition) vs. bulk base metals (representing new tools), and the heat treatment method by induction hardening vs. furnace through-heating. CaldieTM, a Uddeholm trademarked grade was used as trim die material. The mechanical tests are performed using a WSU developed trimming simulator, with fatigue loading applied at cubic die specimen’s cutting edges through a tungsten carbide rod to accelerate the trim edge damage. The tests are periodically interrupted at specified cycles for measurement of die edge damage.
Journal Article

A Comparison of Experimental and Modeled Velocity in Gasoline Direct-Injection Sprays with Plume Interaction and Collapse

2017-03-28
2017-01-0837
Modeling plume interaction and collapse for direct-injection gasoline sprays is important because of its impact on fuel-air mixing and engine performance. Nevertheless, the aerodynamic interaction between plumes and the complicated two-phase coupling of the evaporating spray has shown to be notoriously difficult to predict. With the availability of high-speed (100 kHz) Particle Image Velocimetry (PIV) experimental data, we compare velocity field predictions between plumes to observe the full temporal evolution leading up to plume merging and complete spray collapse. The target “Spray G” operating conditions of the Engine Combustion Network (ECN) is the focus of the work, including parametric variations in ambient gas temperature. We apply both LES and RANS spray models in different CFD platforms, outlining features of the spray that are most critical to model in order to predict the correct aerodynamics and fuel-air mixing.
Technical Paper

A Distributed Engineering Computer Aided Learning System

2012-04-16
2012-01-0089
In this paper, we proposed a distributed Engineering Computer Aided Learning System. Instead of attending engineering teaching sessions, engineering students are able to interact with the software to gain the same amount of teaching materials. Besides, they will interact with other engineering students from other Engineering schools. The proposed software has the ability to examine the student step by step to reach certain goals. The training and the examination will be different based on the student level and his learning process. Using this system the role of excellent professor can be achieved. The software will have two sessions, i.e. test session and learning session. The software provides the capability of knowledge sharing between multi schools and different educational systems that can provide the students with a large set of training materials. The system was built using JAVA programming language.
Journal Article

A Framework for Collaborative Robot (CoBot) Integration in Advanced Manufacturing Systems

2016-04-05
2016-01-0337
Contemporary manufacturing systems are still evolving. The system elements, layouts, and integration methods are changing continuously, and ‘collaborative robots’ (CoBots) are now being considered as practical industrial solutions. CoBots, unlike traditional CoBots, are safe and flexible enough to work with humans. Although CoBots have the potential to become standard in production systems, there is no strong foundation for systems design and development. The focus of this research is to provide a foundation and four tier framework to facilitate the design, development and integration of CoBots. The framework consists of the system level, work-cell level, machine level, and worker level. Sixty-five percent of traditional robots are installed in the automobile industry and it takes 200 hours to program (and reprogram) them.
Journal Article

A Hydrogen Direct Injection Engine Concept that Exceeds U.S. DOE Light-Duty Efficiency Targets

2012-04-16
2012-01-0653
Striving for sustainable transportation solutions, hydrogen is often identified as a promising energy carrier and internal combustion engines are seen as a cost effective consumer of hydrogen to facilitate the development of a large-scale hydrogen infrastructure. Driven by efficiency and emissions targets defined by the U.S. Department of Energy, a research team at Argonne National Laboratory has worked on optimizing a spark-ignited direct injection engine for hydrogen. Using direct injection improves volumetric efficiency and provides the opportunity to properly stratify the fuel-air mixture in-cylinder. Collaborative 3D-CFD and experimental efforts have focused on optimizing the mixture stratification and have demonstrated the potential for high engine efficiency with low NOx emissions. Performance of the hydrogen engine is evaluated in this paper over a speed range from 1000 to 3000 RPM and a load range from 1.7 to 14.3 bar BMEP.
Technical Paper

A Least-Cost Method for Prioritizing Battery Research

1983-02-01
830221
A methodology has been developed for identifying the combination of battery characteristics which lead to least-cost electric vehicles. Battery interrelationships include specific power vs, specific energy, peak power vs. specific energy and DOD, cycle life vs. DOD, cost vs. specific energy and peak power, and volumetric and battery size effects. The method is illustrated for the “second car” mission assuming lead/acid batteries. Reductions in life-cycle costs associated with future battery research breakthroughs are estimated using a sensitivity technique. A research prioritization system is described.
Journal Article

A Machine Learning-Genetic Algorithm (ML-GA) Approach for Rapid Optimization Using High-Performance Computing

2018-04-03
2018-01-0190
A Machine Learning-Genetic Algorithm (ML-GA) approach was developed to virtually discover optimum designs using training data generated from multi-dimensional simulations. Machine learning (ML) presents a pathway to transform complex physical processes that occur in a combustion engine into compact informational processes. In the present work, a total of over 2000 sector-mesh computational fluid dynamics (CFD) simulations of a heavy-duty engine were performed. These were run concurrently on a supercomputer to reduce overall turnaround time. The engine being optimized was run on a low-octane (RON70) gasoline fuel under partially premixed compression ignition (PPCI) mode. A total of nine input parameters were varied, and the CFD simulation cases were generated by randomly sampling points from this nine-dimensional input space. These input parameters included fuel injection strategy, injector design, and various in-cylinder flow and thermodynamic conditions at intake valve closure (IVC).
Technical Paper

A Mathematical Model for Design and Production Verification Planning

1999-05-10
1999-01-1624
The paper focuses on various important decisions of verification and testing plans of the product during its design and production stages. In most of the product and process development projects, decisions on verification and testing are ad-hoc or based on traditions. Such decisions never guarantee the performance of the product as planned, during its whole life cycle. We propose an analytical approach to provide the concrete base for such crucial decisions of verification planning. Accordingly, a mathematical model is presented. Also, a case study of an automotive Electro-mechanical product is included to illustrate the application of the model.
Technical Paper

A Modeling Framework for Connectivity and Automation Co-simulation

2018-04-03
2018-01-0607
This paper presents a unified modeling environment to simulate vehicle driving and powertrain operations within the context of the surrounding environment, including interactions between vehicles and between vehicles and the road. The goal of this framework is to facilitate the analysis of the energy impacts of vehicle connectivity and automation, as well as the development of eco-driving algorithms. Connectivity and automation indeed provide the potential to use information about the environment and future driving to minimize energy consumption. To achieve this goal, the designers of eco-driving control strategies need to simulate a wide range of driving situations, including the interactions with other vehicles and the infrastructure in a closed-loop fashion.
Technical Paper

A New Experimental Technique for Friction Simulation in Automotive Piston Ring and Cylinder Liners

1998-05-04
981407
A new friction testing system has been designed and built to simulate the actual engine conditions in friction and wear test of piston-ring and cylinder liner assembly. Experimental data has been developed as Friction Coefficient / Crank Angle Degree diagrams including the effects of running speed (500 and 700 rpm) and ring normal load. Surface roughness profilocorder traces were obtained for tested samples. Mixed lubrication regime observed in the most part of the test range. New cylinder bore materials and lubricants can be screened easily and more reliable simulated engine friction data can be collected using this technique.
Technical Paper

A Novel Approach for Combat Vehicle Mobility Definition and Assessment

2012-04-16
2012-01-0302
Mobility assessment for combat vehicles is often a great challenge for the military due to various subjective attributes. The attributes' characteristics vary significantly depending on the vehicle type and its operating environments such as terrain, weather, and human factors. A clear definition and relationship between multiple attributes including human factors is necessary to assess mobility. To the best of authors' knowledge, many existing mobility assessment techniques use complex analytical methods and focus on individual attributes. In this paper, for the first time, the authors propose a novel approach to define vehicle mobility and its influencing attributes using qualitative linguistic fuzzy variables, which are defined as having values between 0 and 1. The authors also propose a fuzzy logic mobility (FLM) model and a simulation approach to assess a combat vehicle's mobility.
Technical Paper

A PEV Emulation Approach to Development and Validation of Grid Friendly Optimized Automated Load Control Vehicle Charging Systems

2018-04-03
2018-01-0409
There are many challenges in implementing grid aware plug-in electric vehicle (PEV) charging systems with local load control. New opportunities for innovative load control were created as a result of changes to the 2014 National Electric Code (NEC) about automatic load control definitions for EV charging infrastructure. Stakeholders in optimized dispatch of EV charging assets include the end users (EV drivers), site owner/operators, facility managers and utilities. NEC definition changes allow for ‘over subscription’ of more potential EV charging station load than can be continuously supported if the total load at any time is within the supply system safety limit. Local load control can be implemented via compact submeter(s) with locally hosted control algorithms using direct communication to the managed electric vehicle supply equipment (EVSE).
Technical Paper

A Preliminary Study of Energy Recovery in Vehicles by Using Regenerative Magnetic Shock Absorbers

2001-05-14
2001-01-2071
Road vehicles can expend a significant amount of energy in undesirable vertical motions that are induced by road bumps, and much of that is dissipated in conventional shock absorbers as they dampen the vertical motions. Presented in this paper are some of the results of a study aimed at determining the effectiveness of efficiently transforming that energy into electrical power by using optimally designed regenerative electromagnetic shock absorbers. In turn, the electrical power can be used to recharge batteries or other efficient energy storage devices (e.g., flywheels) rather than be dissipated. The results of the study are encouraging - they suggest that a significant amount of the vertical motion energy can be recovered and stored.
Journal Article

A Progress Review on Soot Experiments and Modeling in the Engine Combustion Network (ECN)

2016-04-05
2016-01-0734
The 4th Workshop of the Engine Combustion Network (ECN) was held September 5-6, 2015 in Kyoto, Japan. This manuscript presents a summary of the progress in experiments and modeling among ECN contributors leading to a better understanding of soot formation under the ECN “Spray A” configuration and some parametric variants. Relevant published and unpublished work from prior ECN workshops is reviewed. Experiments measuring soot particle size and morphology, soot volume fraction (fv), and transient soot mass have been conducted at various international institutions providing target data for improvements to computational models. Multiple modeling contributions using both the Reynolds Averaged Navier-Stokes (RANS) Equations approach and the Large-Eddy Simulation (LES) approach have been submitted. Among these, various chemical mechanisms, soot models, and turbulence-chemistry interaction (TCI) methodologies have been considered.
Technical Paper

A Real-Time Intelligent Speed Optimization Planner Using Reinforcement Learning

2021-04-06
2021-01-0434
As connectivity and sensing technologies become more mature, automated vehicles can predict future driving situations and utilize this information to drive more energy-efficiently than human-driven vehicles. However, future information beyond the limited connectivity and sensing range is difficult to predict and utilize, limiting the energy-saving potential of energy-efficient driving. Thus, we combine a conventional speed optimization planner, developed in our previous work, and reinforcement learning to propose a real-time intelligent speed optimization planner for connected and automated vehicles. We briefly summarize the conventional speed optimization planner with limited information, based on closed-form energy-optimal solutions, and present its multiple parameters that determine reference speed trajectories.
Technical Paper

A Review of Mixture Preparation and Combustion Control Strategies for Spark-Ignited Direct-Injection Gasoline Engines

1997-02-24
970627
The current extensive revisitation of the application of gasoline direct-injection to automotive, four-stroke, spark-ignition engines has been prompted by the availability of technological capabilities that did not exist in the late 1970s, and that can now be utilized in the engine development process. The availability of new engine hardware that permits an enhanced level of computer control and dynamic optimization has alleviated many of the system limitations that were encountered in the time period from 1976 to 1984, when the capabilities of direct-injection, stratified-charge, spark-ignition engines were thoroughly researched. This paper incorporates a critical review of the current worldwide research and development activities in the gasoline direct-injection field, and provides insight into new areas of technology that are being applied to the development of both production and prototype engines.
Technical Paper

A Simple Fan Model for Underhood Thermal Management Analyses

2002-03-04
2002-01-1025
This work presents a simple fan model that is based on the actuator disk approximation, and the blade element and vortex theory of a propeller. A set of equations are derived that require as input the rotational speed of the fan, geometric fan data, and the lift and drag coefficients of the blades. These equations are solved iteratively to obtain the body forces generated by the fan in the axial and circumferential directions. These forces are used as momentum sources in a CFD code to simulate the effect of the fan in an underhood thermal management simulation. To validate this fan model, a fan experiment was simulated. The model was incorporated into the CFD code STAR-CD and predictions were generated for axial and circumferential air velocities at different radial positions and at different planes downstream of the fan. The agreement between experimental measurements and predictions is good.
Technical Paper

A Thermal Energy Operated Heating/Cooling System for Buses

2010-04-12
2010-01-0804
The passenger cabin heating and cooling has a considerable impact on the fuel economy for buses, especially during the waiting period. This problem becomes more significant for the hybrid buses for which the impact of the auxiliary load on the fuel economy is almost twice that on the conventional buses. A second-law analysis conducted in this study indicates that a heat-driven AC system has higher energy utilization efficiency than the conventional AC system. On the basis of this analysis, a concept waste-heat-driven absorptive aqua-ammonia heat pump system is proposed and analyzed. Results of the analysis show that the heat-driven system can reduce the engine auxiliary load significantly because it eliminates the conventional AC compressor. In the AC mode, its energy utilization efficiency can be up to 50%. In the heating mode, the effective efficiency for heating can be up to 100%.
X