Refine Your Search

Topic

Author

Search Results

Journal Article

A Component Test Methodology for Simulation of Full-Vehicle Side Impact Dummy Abdomen Responses for Door Trim Evaluation

2011-04-12
2011-01-1097
Described in this paper is a component test methodology to evaluate the door trim armrest performance in an Insurance Institute for Highway Safety (IIHS) side impact test and to predict the SID-IIs abdomen injury metrics (rib deflection, deflection rate and V*C). The test methodology consisted of a sub-assembly of two SID-IIs abdomen ribs with spine box, mounted on a linear bearing and allowed to translate in the direction of impact. The spine box with the assembly of two abdominal ribs was rigidly attached to the sliding test fixture, and is stationary at the start of the test. The door trim armrest was mounted on the impactor, which was prescribed the door velocity profile obtained from full-vehicle test. The location and orientation of the armrest relative to the dummy abdomen ribs was maintained the same as in the full-vehicle test.
Technical Paper

A New Experimental Technique for Friction Simulation in Automotive Piston Ring and Cylinder Liners

1998-05-04
981407
A new friction testing system has been designed and built to simulate the actual engine conditions in friction and wear test of piston-ring and cylinder liner assembly. Experimental data has been developed as Friction Coefficient / Crank Angle Degree diagrams including the effects of running speed (500 and 700 rpm) and ring normal load. Surface roughness profilocorder traces were obtained for tested samples. Mixed lubrication regime observed in the most part of the test range. New cylinder bore materials and lubricants can be screened easily and more reliable simulated engine friction data can be collected using this technique.
Technical Paper

A Unified Approach to Solder Joint Life Prediction

2000-03-06
2000-01-0454
A unified approach has been developed and applied to solder joint life prediction in this paper, which indicates a breakthrough for solder joint reliability simulation. It includes the material characterization of solder alloys, the testing of solder joint specimens, a unified viscoplastic constitutive framework with damage evolution, numerical algorithm development and implementation, and experimental validation. The emphasis of this report focuses on the algorithm development and experimental verification of proposed viscoplasticity with damage evolution.
Technical Paper

Accurate Measurements of Heat Release, Oxidation Rates, and Soluble Organic Compounds of Diesel Particulates through Thermal Reactions

2010-04-12
2010-01-0814
In an effort of providing better understanding of regeneration mechanisms of diesel particulate matter (PM), this experimental investigation focused on evaluating the amount of heat release generated during the thermal reaction of diesel PM and the concentrations of soluble organic compounds (SOCs) dissolved in PM emissions. Differences in oxidation behaviors were observed for two different diesel PM samples: a SOC-containing PM sample and a dry soot sample with no SOCs. Both samples were collected from a cordierite particulate filter membrane in a thermal reactor connected to the exhaust pipe of a light-duty diesel engine. A differential scanning calorimeter (DSC) and a thermogravimetric analyzer (TGA) were used to measure the amount of heat release during oxidation, along with subsequent oxidation rates and the concentrations of SOCs dissolved in particulate samples, respectively.
Technical Paper

An Experimental Investigation of Spray Transfer Processes in an Electrostatic Rotating Bell Applicator

1998-09-29
982290
A better understanding is needed of the electrostatic rotating bell (ESRB) application of metallic basecoat paint to automobile exteriors in order to exploit their high transfer efficiency without compromising the coating quality. This paper presents the initial results from experimental investigation of sprays from an ESRB which is designed to apply water-borne paint. Water was used as paint surrogate for simplicity. The atomization and transport regions of the spray were investigated using laser light sheet visualizations and phase Doppler particle analyzer (PDPA). The experiments were conducted at varying levels of the three important operating parameters: liquid flow rate, shaping-air flow rate, and bellcup rotational speed. The results show that bellcup speed dominates atomization, but liquid and shaping-air flow rate settings significantly influence the spray structure. The visualization images showed that the atomization occurs in ligament breakup regime.
Technical Paper

Analyses of Low-Frequency Motorcycle Noise Under Both Steady-State and Transient Operating Conditions

2021-08-31
2021-01-1108
This paper presents experimental investigations of diagnosing and analyzing the low-frequency, low- SNR (Signal to Noise Ratio) noise sources of three motorcycles using a hybrid technology that consists of a passive SODAR (Sonic Detection And Ranging) and modified HELS (Helmholtz Equation Least Squares) methods. The former enables one to determine the precise locations of multiple sound sources in 3D space simultaneously over the entire frequency range that is consistent with a measurement microphone in non-ideal environment, where there are random background noise and unknown interfering signals. The latter enables one to reconstruct all acoustic quantities such as the acoustic pressure, acoustic intensity, time-averaged acoustic power, radiation patterns, and sound transmission paths through arbitrarily shaped vibrating structures.
Technical Paper

Application of CFD Modeling in Combustion Bowl Assessment of Diesel Engines Using DoE Methodology

2006-10-16
2006-01-3330
The current paper describes a methodology for combustion bowl assessment for diesel engines. The methodology is based on the application of Computational Fluid Dynamics (CFD) following a Design of Experiments (DoE) procedure. In this work the 3D CFD simulation was performed by the commercial CFD code AVL-FIRE for different combustion bowls from intake valve closing (IVC) to exhaust valve opening (EVO). The initial conditions (at IVC) and boundary conditions were obtained from 1D simulation. Since the work was concentrated on the spray injection, mixing, combustion as well as bowl aerodynamics only a sector mesh was employed for the calculations. A DoE procedure was also used for this simulation work in order to minimize the number of simulation runs and at the same time maintaining the accuracy required assessing the influences of different bowl geometry, spray and intake air motion parameters.
Technical Paper

Behavior of Adhesively Bonded Steel Double Hat-Section Components under Axial Quasi-Static and Impact Loading

2016-04-05
2016-01-0395
An attractive strategy for joining metallic as well as non-metallic substrates through adhesive bonding. This technique of joining also offers the functionality for joining dissimilar materials. However, doubts are often expressed on the ability of such joints to perform on par with other mechanical fastening methodologies such as welding, riveting, etc. In the current study, adhesively-bonded single lap shear (SLS), double lap shear (DLS) and T-peel joints are studied initially under quasi-static loading using substrates made of a grade of mild steel and an epoxy-based adhesive of a renowned make (Huntsman). Additionally, single lap shear joints comprised of a single spot weld are tested under quasi-static loading. The shear strengths of adhesively-bonded SLS joints and spot-welded SLS joints are found to be similar. An important consideration in the deployment of adhesively bonded joints in automotive body structures would be the performance of such joints under impact loading.
Technical Paper

Behavior of Adhesively Bonded Steel Double-Hat Section Components under Lateral Impact Loading

2018-04-03
2018-01-1447
Recent experimental studies on the behavior of adhesively-bonded steel double-hat section components under axial impact loading have produced encouraging results in terms of load-displacement response and energy absorption when compared to traditional spot-welded hat- sections. However, it appears that extremely limited study has been carried out on the behavior of such components under transverse impact loading keeping in mind applications such as automotive body structures subject to lateral/side impact. In the present work, lateral impact studies have been carried out in a drop-weight test set-up on adhesively-bonded steel double-hat section components and the performance of such components has been compared against their conventional spot-welded and hybrid counterparts. It is clarified that hybrid components in the present context refer to adhesively-bonded hat-sections with a few spot welds only aimed at preventing catastrophic flange separations.
Technical Paper

Blend Ratio Optimization of Fuels Containing Gasoline Blendstock, Ethanol, and Higher Alcohols (C3-C6): Part I - Methodology and Scenario Definition

2013-04-08
2013-01-1144
The U.S. Renewable Fuel Standard (RFS2) requires an increase in the use of advanced biofuels up to 36 billion gallons by 2022. Longer chain alcohols, in addition to cellulosic ethanol and synthetic biofuels, could be used to meet this demand while adhering to the RFS2 corn-based ethanol limitation. Higher carbon number alcohols can be utilized to improve the energy content, knock resistance, and/or petroleum displacement of gasoline-alcohol blends compared to traditional ethanol blends such as E10 while maintaining desired and regulated fuel properties. Part I of this paper focuses on the development of scenarios by which to compare higher alcohol fuel blends to traditional ethanol blends. It also details the implementation of fuel property prediction methods adapted from literature. Possible combinations of eight alcohols mixed with a gasoline blendstock were calculated and the properties of the theoretical fuel blends were predicted.
Technical Paper

Can Heavy-Duty Diesel Engines Fueled with DME Meet US 2007/2010 Emissions Standard with A Simplified Aftertreatment System?

2006-04-03
2006-01-0053
Emissions from CI engines fueled with dimethyl ether (DME) were discussed in this paper. Thanks to its high content of fuel oxygen, DME combustion is virtually soot free. This characteristic of DME combustion indicates that the particulate filter will not be needed in the aftertreatment system for engines fueled with DME. NOx emissions from a CI engine fueled with DME can meet the US 2007 regulation with a high EGR rate. Because 49% more fuel mass must be delivered in each DME injection than the corresponding diesel-fuel injection, and the DME injection pressure is lower than 500 bar under the current fuel-system technology, the DME injection duration is generally longer than that of diesel-fuel injection. This is unfavorable to further NOx reduction. A multiple-injection strategy with timing for the primary injection determined by the cylinder temperature was proposed.
Technical Paper

Characterization of Oxidation Behaviors and Chemical-Kinetics Parameters of Diesel Particulates Relevant to DPF Regeneration

2010-10-25
2010-01-2166
At the current stage of engine technology, diesel engines typically require diesel particulate filter (DPF) systems to meet recent particulate emissions standards. To assure the performance and reliability of DPF systems, profound understanding of filtration and regeneration mechanisms is required. Among extensive efforts for developing advanced DPF systems, the development of effective thermal management strategies, which control the thermal runaway taking place in oxidation of an excess amount of soot deposit in DPF, is quite challenging. This difficulty stems mainly from lack of sufficient knowledge and understanding about DPF regeneration mechanisms, which need detailed information about oxidation of diesel particulate matter (PM). Therefore, this work carried out a series of oxidation experiments of diesel particulates collected from a DPF on a diesel engine, and evaluated the oxidation rates of the samples using a thermo-gravimetric analyzer (TGA).
Technical Paper

Clean and Cost-effective Dry Boundary Lubricants for Aluminum Forming

1998-02-23
980453
Preliminary research in our laboratory has demonstrated that boric acid is an effective lubricant with an unusual capacity to reduce the sliding friction (providing friction coefficients as low as 0.02) and wear of metallic and ceramic materials. More recent studies have revealed that water or methanol solutions of boric acid can be used to prepare strongly bonded layers of boric acid on aluminum surfaces. It appears that boric acid molecules have a strong tendency to bond chemically to the naturally oxidized surfaces of aluminum and its alloys and to make these surfaces very slippery. Recent metal-formability tests indicated that the boric acid films applied to aluminum surfaces worked quite well, improving draw scale performance by 58 to 75%.
Technical Paper

Combined Binder Force and Temperature Adjustment for Weld Line Movement Control in Stamping with Tailor-Welded Blanks

2006-04-03
2006-01-0352
This paper introduces a new method to assist deep drawing of tailor-welded blanks with combined restraining force control and binder temperature control. The effect of variable flange temperature and blank holding force on the formability and weld-line displacement of aluminum tailor-welded blank was studied through Finite Element Analysis using LS-DYNA PC.
Technical Paper

Comparing the Performance of GTL/ULSD Blends in Older and Newer Diesel Passenger Cars

2008-06-23
2008-01-1810
Gas-to-Liquids (GTL) is a liquid diesel fuel produced from natural gas, which may have certain attributes different from conventional ultra low sulfur diesel (ULSD). In this investigation, GTL, ULSD, and their blends of 20% and 50% GTL in ULSD were tested in an older Mercedes C Class (MY1999, Euro 2) and a newer Opel Astra (MY2006, Euro 4) diesel vehicle to evaluate the performance in terms of fuel consumption and emissions. Each vehicle was pre-conditioned on-road with one tank full of test fuel before actual testing in a chassis dynamometer facility. Both vehicles were calibrated for European emission standards and operation, and they were not re-calibrated for the fuel tests at Argonne National Laboratory (ANL). In the two-vehicle EPA FTP-75, US06, and Highway drive-cycle tests, the emissions of carbon dioxide on a per-mile basis (g/mi) from all GTL-containing fuels were significantly lower than those from the ULSD.
Technical Paper

Comparison of RCCI Operation with and without EGR over the Full Operating Map of a Heavy-Duty Diesel Engine

2016-04-05
2016-01-0794
Dual-fuel combustion using port-injection of low reactivity fuel combined with direct injection of a higher reactivity fuel, otherwise known as Reactivity Controlled Compression Ignition (RCCI), has been shown as a method to achieve high efficiency combustion with moderate peak pressure rise rates, low engine-out soot and NOx emissions. A key requirement for extending to high-load operation is reduce the reactivity of the premixed charge prior to the diesel injection. One way to accomplish this is to use a very low reactivity fuel such as natural gas. In this work, experimental testing was conducted on a 13L multi-cylinder heavy-duty diesel engine modified to operate using RCCI combustion with port injection of natural gas and direct injection of diesel fuel. Natural gas/diesel RCCI engine operation is compared over the EPA Heavy-Duty 13 mode supplemental emissions test with and without EGR.
Technical Paper

Detailed Investigation of Soot Deposition and Oxidation Characteristics in a Diesel Particulate Filter Using Optical Visualization

2013-04-08
2013-01-0528
Detailed soot deposition and oxidation characteristics in a diesel particulate filter (DPF) have been experimentally examined on a unique bench-scale DPF test system that has a visualization window. The filtration and regeneration processes were visualized to examine soot deposition and oxidation behaviors on the filter channel surfaces, along with measurements of pressure drop across the filter. The pressure drop caused by trapped soot was separated from the measured total pressure drop by subtracting the pressure drop caused by the clean filter itself. Then, the soot-derived pressure-drop data, normalized (non-dimensionalized) by the volumetric flow rate, exhaust gas viscosity, and DPF volume, were used to compare filtration and regeneration characteristics at different experimental conditions, independently of flow conditions.
Technical Paper

Development Of A Practical Multi-disciplinary Design Optimization (MDO) Algorithm For Vehicle Body Design

2016-04-05
2016-01-1537
The present work is concerned with the objective of developing a process for practical multi-disciplinary design optimization (MDO). The main goal adopted here is to minimize the weight of a vehicle body structure meeting NVH (Noise, Vibration and Harshness), durability, and crash safety targets. Initially, for simplicity a square tube is taken for the study. The design variables considered in the study are width, thickness and yield strength of the tube. Using the Response Surface Method (RSM) and the Design Of Experiments (DOE) technique, second order polynomial response surfaces are generated for prediction of the structural performance parameters such as lowest modal frequency, fatigue life, and peak deceleration value. The optimum solution is then obtained by using traditional gradient-based search algorithm functionality “fmincon” in commercial Matlab package.
Technical Paper

Development in Lost Foam Casting of Magnesium

2003-03-03
2003-01-0821
Preliminary work was conducted in the casting of magnesium using the lost foam casting process. The lost foam or expendable pattern casting (EPC) process is capable of making extremely complicated part shapes at acceptable soundness levels and with low manufacturing costs. Standard test shapes were used to determine the ability of the magnesium to fill the mold and to assess the types of defects encountered. This paper will briefly explain how this project evolved including the developmental strategies formed, the products selected, the casting trials performed, and the casting results.
Technical Paper

Development of a 3-D Model for Analyzing the Effects of Channel Geometry on Filtration Characteristics in Particulate Filter System

2013-04-08
2013-01-1583
A three-dimensional (3-D) computational fluid dynamics (CFD) code has been developed to predict flow dynamics and pressure drop characteristics in geometry-modified filters in which the normalized distance of the outlet channel plugs from the inlet has been varied at 0.25, 0.50, and 0.75. In clean filter simulations, the pressure drop in geometry-modified filters showed higher values than for conventional filters because of the significant change in the pressure field formed inside the channel that determines the amount of flow entering the modified channel. This flow through the modified channel depends on plug position initially but has a maximum limit when pressure difference and geometrical change are compromised. For soot loading simulations, a Lagrangian multiphase flow model was used to interpret the hydrodynamics of particle-laden flow with realistic inputs.
X