Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Characteristic Parameter to Estimate the Optimum Counterweight Mass of a 4-Cylinder In-Line Engine

2002-03-04
2002-01-0486
A dimensionless relationship that estimates the maximum bearing load of a 4-cylinder 4-stroke in-line engine has been found. This relationship may assist the design engineer in choosing a desired counterweight mass. It has been demonstrated that: 1) the average bearing load increases with engine speed and 2) the maximum bearing load initially decreases with engine speed, reaches a minimum, then increases quickly with engine speed. This minimum refers to a transition speed at which the contribution of the inertia force overcomes the contribution of the maximum pressure force to the maximum bearing load. The transition speed increases with an increase of counterweight mass and is a function of maximum cylinder pressure and the operating parameters of the engine.
Journal Article

A Component Test Methodology for Simulation of Full-Vehicle Side Impact Dummy Abdomen Responses for Door Trim Evaluation

2011-04-12
2011-01-1097
Described in this paper is a component test methodology to evaluate the door trim armrest performance in an Insurance Institute for Highway Safety (IIHS) side impact test and to predict the SID-IIs abdomen injury metrics (rib deflection, deflection rate and V*C). The test methodology consisted of a sub-assembly of two SID-IIs abdomen ribs with spine box, mounted on a linear bearing and allowed to translate in the direction of impact. The spine box with the assembly of two abdominal ribs was rigidly attached to the sliding test fixture, and is stationary at the start of the test. The door trim armrest was mounted on the impactor, which was prescribed the door velocity profile obtained from full-vehicle test. The location and orientation of the armrest relative to the dummy abdomen ribs was maintained the same as in the full-vehicle test.
Technical Paper

A Hybrid System Solution of the Interrupt Latency Compatibility Problem

1999-03-01
1999-01-1099
Microprocessors and microcontrollers are now widely used in automobiles. Microprocessor systems contain sources of interrupt and interrupt service routines, which are software components executed in response to the assertion of an interrupt in hardware. A major problem in designing the software of microprocessor systems is the analytical treatment of interrupt latency. Because multiple interrupt service routines are executed on the same CPU, they compete for the CPU and interfere with each other's latency requirements. Here, interrupt latency is defined as the delay between the assertion of the interrupt in hardware and the start of execution of the associated interrupt service routine. It is estimated that 80% of intermittent bugs in small microprocessor software loads are due to improper treatment of interrupts. Until this work, there is no analytic method for analyzing a particular system to determine if it may violate interrupt latency requirements.
Journal Article

A Hydrogen Direct Injection Engine Concept that Exceeds U.S. DOE Light-Duty Efficiency Targets

2012-04-16
2012-01-0653
Striving for sustainable transportation solutions, hydrogen is often identified as a promising energy carrier and internal combustion engines are seen as a cost effective consumer of hydrogen to facilitate the development of a large-scale hydrogen infrastructure. Driven by efficiency and emissions targets defined by the U.S. Department of Energy, a research team at Argonne National Laboratory has worked on optimizing a spark-ignited direct injection engine for hydrogen. Using direct injection improves volumetric efficiency and provides the opportunity to properly stratify the fuel-air mixture in-cylinder. Collaborative 3D-CFD and experimental efforts have focused on optimizing the mixture stratification and have demonstrated the potential for high engine efficiency with low NOx emissions. Performance of the hydrogen engine is evaluated in this paper over a speed range from 1000 to 3000 RPM and a load range from 1.7 to 14.3 bar BMEP.
Journal Article

A Machine Learning-Genetic Algorithm (ML-GA) Approach for Rapid Optimization Using High-Performance Computing

2018-04-03
2018-01-0190
A Machine Learning-Genetic Algorithm (ML-GA) approach was developed to virtually discover optimum designs using training data generated from multi-dimensional simulations. Machine learning (ML) presents a pathway to transform complex physical processes that occur in a combustion engine into compact informational processes. In the present work, a total of over 2000 sector-mesh computational fluid dynamics (CFD) simulations of a heavy-duty engine were performed. These were run concurrently on a supercomputer to reduce overall turnaround time. The engine being optimized was run on a low-octane (RON70) gasoline fuel under partially premixed compression ignition (PPCI) mode. A total of nine input parameters were varied, and the CFD simulation cases were generated by randomly sampling points from this nine-dimensional input space. These input parameters included fuel injection strategy, injector design, and various in-cylinder flow and thermodynamic conditions at intake valve closure (IVC).
Technical Paper

A Review of Mixture Preparation and Combustion Control Strategies for Spark-Ignited Direct-Injection Gasoline Engines

1997-02-24
970627
The current extensive revisitation of the application of gasoline direct-injection to automotive, four-stroke, spark-ignition engines has been prompted by the availability of technological capabilities that did not exist in the late 1970s, and that can now be utilized in the engine development process. The availability of new engine hardware that permits an enhanced level of computer control and dynamic optimization has alleviated many of the system limitations that were encountered in the time period from 1976 to 1984, when the capabilities of direct-injection, stratified-charge, spark-ignition engines were thoroughly researched. This paper incorporates a critical review of the current worldwide research and development activities in the gasoline direct-injection field, and provides insight into new areas of technology that are being applied to the development of both production and prototype engines.
Technical Paper

A Thermal Energy Operated Heating/Cooling System for Buses

2010-04-12
2010-01-0804
The passenger cabin heating and cooling has a considerable impact on the fuel economy for buses, especially during the waiting period. This problem becomes more significant for the hybrid buses for which the impact of the auxiliary load on the fuel economy is almost twice that on the conventional buses. A second-law analysis conducted in this study indicates that a heat-driven AC system has higher energy utilization efficiency than the conventional AC system. On the basis of this analysis, a concept waste-heat-driven absorptive aqua-ammonia heat pump system is proposed and analyzed. Results of the analysis show that the heat-driven system can reduce the engine auxiliary load significantly because it eliminates the conventional AC compressor. In the AC mode, its energy utilization efficiency can be up to 50%. In the heating mode, the effective efficiency for heating can be up to 100%.
Technical Paper

A Visualization Study of Liquid Fuel Distribution and Combustion Inside a Port-Injected Gasoline Engine Under Different Start Conditions

2000-03-06
2000-01-0242
High-speed video of combustion processes and cylinder pressure traces were obtained from a single-cylinder optical-accessible engine with a production four-valve cylinder head to study the mixture formation and flame propagation characteristics at near-stoichiometric start condition. Laser-sheet Mie-scattering images were collected for liquid droplet distributions inside the cylinder to correlate the mixture formation process with the combustion results. A dual-stream (DS) injector and a quad-stream (QS) injector were used to study the spray dispersion effect on engine starting, under different injection timings, throttle valve positions, engine speeds, and intake temperatures. It was found that most of the fuel under open-valve injection (OVI) conditions entered the cylinder as droplet mist. A significant part of the fuel droplets hit the far end of the cylinder wall at the exhaust-valve side.
Technical Paper

A Warpage Measurement System with Large Dynamic Range for Boards with Components

2000-03-06
2000-01-0458
A new algorithm for carrier removal, a key step in the Fourier transform method of fringe pattern analysis, is presented in this paper. The accuracy of frequency estimations is critical to carrier removal to avoid potential significant errors in the recovered phase. A new algorithm on Fourier transform and curve fitting technique is developed. To avoid an ill-conditioned result in solving the least-square problem, an orthogonal polynomial curve fitting algorithm is developed. A new system that combines projected grating moiré (PM) with shadow moiré (SM), recently designed and built with large dynamic range for both component level and board level warpage measurement for the reliability study of electronic packaging materials and structures, is presented and demonstrated.
Journal Article

Accelerating the Generation of Static Coupling Injection Maps Using a Data-Driven Emulator

2021-04-06
2021-01-0550
Accurate modeling of the internal flow and spray characteristics in fuel injectors is a critical aspect of direct injection engine design. However, such high-fidelity computational fluid dynamics (CFD) models are often computationally expensive due to the requirement of resolving fine temporal and spatial scales. This paper addresses the computational bottleneck issue by proposing a machine learning-based emulator framework, which learns efficient surrogate models for spatiotemporal flow distributions relevant for static coupling injection maps, namely total void fraction, velocity, and mass, within a design space of interest. Different design points involving variations of needle lift, fuel viscosity, and level of non-condensable gas in the fuel were explored in this study. An interpretable Bayesian learning strategy was employed to understand the effect of the design parameters on the void fraction fields at the exit of the injector orifice.
Technical Paper

Achieving Stable Engine Operation of Gasoline Compression Ignition Using 87 AKI Gasoline Down to Idle

2015-04-14
2015-01-0832
For several years there has been a great deal of effort made in researching ways to run a compression ignition engine with simultaneously high efficiency and low emissions. Recently much of this focus has been dedicated to using gasoline-like fuels that are more volatile and less reactive than conventional diesel fuel to allow the combustion to be more premixed. One of the key challenges to using fuels with such properties in a compression ignition engine is stable engine operation at low loads. This paper provides an analysis of how stable gasoline compression ignition (GCI) engine operation was achieved down to idle speed and load on a multi-cylinder compression ignition engine using only 87 anti-knock index (AKI) gasoline. The variables explored to extend stable engine operation to idle included: uncooled exhaust gas recirculation (EGR), injection timing, injection pressure, and injector nozzle geometry.
Technical Paper

An Examination of Spray Stochastics in Single-Hole Diesel Injectors

2015-09-01
2015-01-1834
Recent advances in x-ray spray diagnostics at Argonne National Laboratory's Advanced Photon Source have made absorption measurements of individual spray events possible. A focused x-ray beam (5×6 μm) enables collection of data along a single line of sight in the flow field and these measurements have allowed the calculation of quantitative, shot-to-shot statistics for the projected mass of fuel sprays. Raster scanning though the spray generates a two-dimensional field of data, which is a path integrated representation of a three-dimensional flow. In a previous work, we investigated the shot-to-shot variation over 32 events by visualizing the ensemble standard deviations throughout a two dimensional mapping of the spray. In the current work, provide further analysis of the time to steady-state and steady-state spatial location of the fluctuating field via the transverse integrated fluctuations (TIF).
Technical Paper

An Experimental Assessment of Turbulence Production, Reynolds Stress and Length Scale (Dissipation) Modeling in a Swirl-Supported DI Diesel Engine

2003-03-03
2003-01-1072
Simultaneous measurements of the radial and the tangential components of velocity are obtained in a high-speed, direct-injection diesel engine typical of automotive applications. Results are presented for engine operation with fuel injection, but without combustion, for three different swirl ratios and four injection pressures. With the mean and fluctuating velocities, the r-θ plane shear stress and the mean flow gradients are obtained. Longitudinal and transverse length scales are also estimated via Taylor's hypothesis. The flow is shown to be sufficiently homogeneous and stationary to obtain meaningful length scale estimates. Concurrently, the flow and injection processes are simulated with KIVA-3V employing a RNG k-ε turbulence model. The measured turbulent kinetic energy k, r-θ plane mean strain rates ( 〈Srθ〉, 〈Srr〉, and 〈Sθθ〉 ), deviatoric turbulent stresses , and the r-θ plane turbulence production terms are compared directly to the simulated results.
Journal Article

An Experimental and Numerical Study of Diesel Spray Impingement on a Flat Plate

2017-03-28
2017-01-0854
Combustion systems with advanced injection strategies have been extensively studied, but there still exists a significant fundamental knowledge gap on fuel spray interactions with the piston surface and chamber walls. This paper is meant to provide detailed data on spray-wall impingement physics and support the spray-wall model development. The experimental work of spray-wall impingement with non-vaporizing spray characterization, was carried out in a high pressure-temperature constant-volume combustion vessel. The simultaneous Mie scattering of liquid spray and schlieren of liquid and vapor spray were carried out. Diesel fuel was injected at a pressure of 1500 bar into ambient gas at a density of 22.8 kg/m3 with isothermal conditions (fuel, ambient, and plate temperatures of 423 K). A Lagrangian-Eulerian modeling approach was employed to characterize the spray-gas and spray-wall interactions in the CONVERGETM framework by means of a Reynolds-Averaged Navier-Stokes (RANS) formulation.
Technical Paper

An Investigation of Grid Convergence for Spray Simulations using an LES Turbulence Model

2013-04-08
2013-01-1083
A state-of-the-art spray modeling methodology, recently applied to RANS simulations, is presented for LES calculations. Key features of the methodology, such as Adaptive Mesh Refinement (AMR), advanced liquid-gas momentum coupling, and improved distribution of the liquid phase, are described. The ability of this approach to use cell sizes much smaller than the nozzle diameter is demonstrated. Grid convergence of key parameters is verified for non-evaporating and evaporating spray cases using cell sizes down to 1/32 mm. It is shown that for global quantities such as spray penetration, comparing a single LES simulation to experimental data is reasonable, however for local quantities the average of many simulated injections is necessary. Grid settings are recommended that optimize the accuracy/runtime tradeoff for LES-based spray simulations.
Technical Paper

Analysis of Accelerator Hardware for Autonomous Vehicles and Data Centers

2019-10-22
2019-01-2615
The development of Autonomous Vehicles (AV) has become a popular subject in academia and industry. Companies and cities are quickly realizing the opportunities that AVs can generate from Mobility as a Service to traffic safety. The challenges for the infrastructure to incorporate AVs as a viable transportation source are immense, from an outdated infrastructure to radical Smart-City designs. Historically, the transportation infrastructure has faced challenges from underfunding, economics, and much needed improvements. With the current infrastructure unable to support many of the services required by a fully connected network, a transformation will be necessary to meet growing mobility needs. The role of accelerating technology in data centers are key for production operations among industry leaders such as Amazon and Microsoft for real-time processing.
Technical Paper

Analysis of the Spray Numerical Injection Modeling for Gasoline Applications

2020-04-14
2020-01-0330
The modeling of fuel jet atomization is key in the characterization of Internal Combustion (IC) engines, and 3D Computational Fluid Dynamics (CFD) is a recognized tool to provide insights for design and control purposes. Multi-hole injectors with counter-bored nozzle are the standard for Gasoline Direct Injection (GDI) applications and the Spray-G injector from the Engine Combustion Network (ECN) is considered the reference for numerical studies, thanks to the availability of extensive experimental data. In this work, the behavior of the Spray-G injector is simulated in a constant volume chamber, ranging from sub-cooled (nominal G) to flashing conditions (G2), validating the models on Diffused Back Illumination and Phase Doppler Anemometry data collected in vaporizing inert conditions.
Technical Paper

Analytical Approach to Characterize the Effect of Engine Control Parameters and Fuel Properties on ACI Operation in a GDI Engine

2020-04-14
2020-01-1141
Advanced compression ignition (ACI) operation in gasoline direct injection (GDI) engines is a promising concept to reduce fuel consumption and emissions at part load conditions. However, combustion phasing control and the limited operating range in ACI mode are a perennial challenge. In this study the combined impact of fuel properties and engine control strategies in ACI operation are investigated. A design of experiments method was implemented using a three level orthogonal array to determine the sensitivity of engine control parameters on the engine load, combustion noise and stability under low load ACI operation for three RON 98 gasoline fuels, each exhibiting disparate chemical composition. Furthermore, the thermodynamic state of the compression histories was studied with the aid of the pressure-temperature framework.
Technical Paper

Automotive Hybrid System Optimization Using Dynamic Programming

2003-03-03
2003-01-0847
An automotive powertrain system consists of several interactive and linked nonlinear systems. This research focuses on the coordination of Gasoline Direct Injection (GDI) engine, transmission and emission aftertreatment systems. The goal is to design an optimal control strategy for driving performance, emissions (HC, CO, NOX), fuel economy and smoothness when switching engine mode and when shifting gears, under both discrete and continuous limitations. A multivariable control strategy is used to compromise among all powertrain subsystems to achieve optimal overall performance. A nonlinear discrete dynamic programming approach is proposed for hybrid system optimization. The complex multivariable automotive control problem is then simplified into an optimization problem. The feasibility of automotive hybrid control via the discrete dynamic programming approach is demonstrated by results from many numerical simulations under different operating conditions.
Technical Paper

Bulk Spray and Individual Plume Characterization of LPG and Iso-Octane Sprays at Engine-Like Conditions

2022-03-29
2022-01-0497
This study presents experimental and numerical examination of directly injected (DI) propane and iso-octane, surrogates for liquified petroleum gas (LPG) and gasoline, respectively, at various engine like conditions with the overall objective to establish the baseline with regards to fuel delivery required for future high efficiency DI-LPG fueled heavy-duty engines. Sprays for both iso-octane and propane were characterized and the results from the optical diagnostic techniques including high-speed Schlieren and planar Mie scattering imaging were applied to differentiate the liquid-phase regions and the bulk spray phenomenon from single plume behaviors. The experimental results, coupled with high-fidelity internal nozzle-flow simulations were then used to define best practices in CFD Lagrangian spray models.
X