Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A 3D Simulation Methodology for Predicting the Effects of Blasts on a Vehicle Body

2019-04-02
2019-01-1033
Triggered explosions are increasingly becoming common in the world today leading to the loss of precious lives under the most unexpected circumstances. In most scenarios, ordinary citizens are the targets of such attacks, making it essential to design countermeasures in open areas as well as in mobility systems to minimize the destructive effects of such explosive-induced blasts. It would be rather difficult and to an extent risky to carry out physical experiments mimicking blasts in real world scenarios. In terms of mechanics, the problem is essentially one of fluid-structure interaction in which pressure waves in the surrounding air are generated by detonating an explosive charge which then have the potential to cause severe damage to any obstacle on the path of these high-energy waves.
Journal Article

A Comparison of Experimental and Modeled Velocity in Gasoline Direct-Injection Sprays with Plume Interaction and Collapse

2017-03-28
2017-01-0837
Modeling plume interaction and collapse for direct-injection gasoline sprays is important because of its impact on fuel-air mixing and engine performance. Nevertheless, the aerodynamic interaction between plumes and the complicated two-phase coupling of the evaporating spray has shown to be notoriously difficult to predict. With the availability of high-speed (100 kHz) Particle Image Velocimetry (PIV) experimental data, we compare velocity field predictions between plumes to observe the full temporal evolution leading up to plume merging and complete spray collapse. The target “Spray G” operating conditions of the Engine Combustion Network (ECN) is the focus of the work, including parametric variations in ambient gas temperature. We apply both LES and RANS spray models in different CFD platforms, outlining features of the spray that are most critical to model in order to predict the correct aerodynamics and fuel-air mixing.
Journal Article

A Component Test Methodology for Simulation of Full-Vehicle Side Impact Dummy Abdomen Responses for Door Trim Evaluation

2011-04-12
2011-01-1097
Described in this paper is a component test methodology to evaluate the door trim armrest performance in an Insurance Institute for Highway Safety (IIHS) side impact test and to predict the SID-IIs abdomen injury metrics (rib deflection, deflection rate and V*C). The test methodology consisted of a sub-assembly of two SID-IIs abdomen ribs with spine box, mounted on a linear bearing and allowed to translate in the direction of impact. The spine box with the assembly of two abdominal ribs was rigidly attached to the sliding test fixture, and is stationary at the start of the test. The door trim armrest was mounted on the impactor, which was prescribed the door velocity profile obtained from full-vehicle test. The location and orientation of the armrest relative to the dummy abdomen ribs was maintained the same as in the full-vehicle test.
Technical Paper

A Data-Based Modeling Approach for the Prediction of Front Impact (NCAP) Safety Performance of a Passenger Vehicle

2021-04-06
2021-01-0923
Designing a vehicle for superior crash safety performance in consumer rating tests such as US-NCAP is a compelling target in the design of passenger vehicles. In today’s context, there is also a high emphasis on making a vehicle as lightweight as possible which calls for an efficient design. In modern vehicle design, these objectives can only be achieved through Computer-Aided Engineering (CAE) for which a detailed CAD (Computer-Aided Design) model of a vehicle is a pre-requisite. In the absence of the latter (i.e. a matured CAD model) at the initial and perhaps the most crucial phase of vehicle body design, a rational approach to design would be to resort to a knowledge-based methodology which can enable crash safety assessment of an assumed design using artificial intelligence techniques such as neural networks.
Technical Paper

A Methodology for Prediction of Periprosthetic Injuries in Occupants with TKR Implants in Vehicle Crashes

2016-04-05
2016-01-1529
Periprosthetic fractures refer to the fractures that occur in the vicinity of the implants of joint replacement arthroplasty. Most of the fractures during an automotive frontal collision involve the long bones of the lower limbs (femur and tibia). Since the prevalence of persons living with lower limb joint prostheses is increasing, periprosthetic fractures that occur during vehicular accidents are likely to become a considerable burden on health care systems. It is estimated that approximately 4.0 million adults in the U.S. currently live with Total Knee Replacement (TKR) implants. Therefore, it is essential to study the injury patterns that occur in the long bone of a lower limb containing a total knee prosthesis. The aim of the present study is to develop an advanced finite element model that simulates the possible fracture patterns that are likely during vehicular accidents involving occupants who have knee joint prostheses in situ.
Journal Article

A Preliminary Study on the Restraint System of Self-Driving Car

2020-04-14
2020-01-1333
Due to the variation of compartment design and occupant’s posture in self-driving cars, there is a new and major challenge for occupant protection. In particular, the studies on occupant restraint systems used in the self-driving car have been significantly delayed compared to the development of the autonomous technologies. In this paper, a numerical study was conducted to investigate the effectiveness of three typical restraint systems on the driver protection in three different scenarios.
Technical Paper

A Severe Ankle and Foot Injury in Frontal Crashes and Its Mechanism

1998-11-02
983145
In a frontal automotive crash, the driver's foot is usually stepping on the brake pedal as an instinctive response to avoid a collision. The tensile force generated in the Achilles tendon produces a compressive preload on the tibia. If there is intrusion of the toe board after the crash, an additional external force is applied to the driver's foot. A series of dynamic impact tests using human cadaveric specimens was conducted to investigate the combined effect of muscle preloading and external force. A constant tendon force was applied to the calcaneus while an external impact force was applied to the forefoot by a rigid pendulum. Preloading the tibia significantly increased the tibial axial force and the combination of these forces resulted in five tibial pylon fractures out of sixteen specimens.
Technical Paper

A Visualization Study of Liquid Fuel Distribution and Combustion Inside a Port-Injected Gasoline Engine Under Different Start Conditions

2000-03-06
2000-01-0242
High-speed video of combustion processes and cylinder pressure traces were obtained from a single-cylinder optical-accessible engine with a production four-valve cylinder head to study the mixture formation and flame propagation characteristics at near-stoichiometric start condition. Laser-sheet Mie-scattering images were collected for liquid droplet distributions inside the cylinder to correlate the mixture formation process with the combustion results. A dual-stream (DS) injector and a quad-stream (QS) injector were used to study the spray dispersion effect on engine starting, under different injection timings, throttle valve positions, engine speeds, and intake temperatures. It was found that most of the fuel under open-valve injection (OVI) conditions entered the cylinder as droplet mist. A significant part of the fuel droplets hit the far end of the cylinder wall at the exhaust-valve side.
Technical Paper

An Alternative Approach for Formulation of a Crushable PU Foam Considering its Behavior under Compressive Loads

2015-04-14
2015-01-1483
Rigid polyurethane (PU) foam finds wide applications as a lightweight material in impact safety design such as improving occupant safety in vehicle crashes. The two principal reacting compounds for formulating such foam are variants of polyol and isocyanate. In the present study, an alternative mechanical engineering-based approach for determining, with confidence, the desirable ratio of reacting compounds for formulation of a rigid/crushable PU foam for mechanical applications is demonstrated. According to the present approach, PU foam samples are prepared by varying the mixing ratio over a wide range. The desirable mixing ratio is shown to be the one that optimizes key mechanical properties under compression such as total absorbed energy, specific absorbed energy and energy absorption efficiency.
Technical Paper

An Examination of Spray Stochastics in Single-Hole Diesel Injectors

2015-09-01
2015-01-1834
Recent advances in x-ray spray diagnostics at Argonne National Laboratory's Advanced Photon Source have made absorption measurements of individual spray events possible. A focused x-ray beam (5×6 μm) enables collection of data along a single line of sight in the flow field and these measurements have allowed the calculation of quantitative, shot-to-shot statistics for the projected mass of fuel sprays. Raster scanning though the spray generates a two-dimensional field of data, which is a path integrated representation of a three-dimensional flow. In a previous work, we investigated the shot-to-shot variation over 32 events by visualizing the ensemble standard deviations throughout a two dimensional mapping of the spray. In the current work, provide further analysis of the time to steady-state and steady-state spatial location of the fluctuating field via the transverse integrated fluctuations (TIF).
Technical Paper

An Experimental Investigation of Spray Transfer Processes in an Electrostatic Rotating Bell Applicator

1998-09-29
982290
A better understanding is needed of the electrostatic rotating bell (ESRB) application of metallic basecoat paint to automobile exteriors in order to exploit their high transfer efficiency without compromising the coating quality. This paper presents the initial results from experimental investigation of sprays from an ESRB which is designed to apply water-borne paint. Water was used as paint surrogate for simplicity. The atomization and transport regions of the spray were investigated using laser light sheet visualizations and phase Doppler particle analyzer (PDPA). The experiments were conducted at varying levels of the three important operating parameters: liquid flow rate, shaping-air flow rate, and bellcup rotational speed. The results show that bellcup speed dominates atomization, but liquid and shaping-air flow rate settings significantly influence the spray structure. The visualization images showed that the atomization occurs in ligament breakup regime.
Journal Article

An Exploration of Jute-Polyester Composite for Vehicle Head Impact Safety Countermeasures

2018-04-03
2018-01-0844
Natural fiber-reinforced composites are currently gaining increasing attention as potential substitutes to pervasive synthetic fiber-reinforced composites, particularly glass fiber-reinforced plastics (GFRP). The advantages of the former category of composites include (a) being conducive to occupational health and safety during fabrication of parts as well as handling as compared to GFRP, (b) economy especially when compared to carbon fiber-reinforced composites (CFRC), (c) biodegradability of fibers, and (d) aesthetic appeal. Jute fibers are especially relevant in this context as jute fabric has a consistent supply base with reliable mechanical properties. Recent studies have shown that components such as tubes and plates made of jute-polyester (JP) composites can have competitive performance under impact loading when compared with similar GFRP-based structures.
Technical Paper

An Investigation of Particulate Morphology, Microstructures, and Fractal Geometry for ael Diesel Engine-Simulating Combustor

2004-10-25
2004-01-3044
The particulate matter (PM) produced from a diesel engine-simulating combustor was characterized in its morphology, microstructure, and fractal geometry by using a unique thermophoretic sampling and Transmission Electron Microscopy (TEM) system. These results revealed that diesel PM produced from the laboratory-scale burner showed similar morphological characteristics to the particulates produced from diesel engines. The flame air/fuel ratio and the particulate temperature history have significant influences on both particle size and fractal geometry. The primary particle sizes were measured to be 14.7 nm and 14.8 nm under stoichiometric and fuel-rich flame conditions, respectively. These primary particle sizes are smaller than those produced from diesel engines. The radii of gyration for the aggregate particles were 83.8 nm and 47.5 nm under these two flame conditions.
Technical Paper

An Optimization Study of Occupant Restraint System for Different BMI Senior Women Protection in Frontal Impacts

2020-04-14
2020-01-0981
Accident statistics have shown that older and obese occupants are less adaptable to existing vehicle occupant restraint systems than ordinary middle-aged male occupants, and tend to have higher injury risk in vehicle crashes. However, the current research on injury mechanism of aging and obese occupants in vehicle frontal impacts is scarce. This paper focuses on the optimization design method of occupant restraint system parameters for specific body type characteristics. Three parameters, namely the force limit value of the force limiter in the seat belt, pretensioner preload of the seat belt and the proportionality coefficient of mass flow rate of the inflator were used for optimization. The objective was to minimize the injury risk probability subjected to constraints of occupant injury indicator values for various body regions as specified in US-NCAP frontal impact tests requirements.
Technical Paper

Analyses of Low-Frequency Motorcycle Noise Under Both Steady-State and Transient Operating Conditions

2021-08-31
2021-01-1108
This paper presents experimental investigations of diagnosing and analyzing the low-frequency, low- SNR (Signal to Noise Ratio) noise sources of three motorcycles using a hybrid technology that consists of a passive SODAR (Sonic Detection And Ranging) and modified HELS (Helmholtz Equation Least Squares) methods. The former enables one to determine the precise locations of multiple sound sources in 3D space simultaneously over the entire frequency range that is consistent with a measurement microphone in non-ideal environment, where there are random background noise and unknown interfering signals. The latter enables one to reconstruct all acoustic quantities such as the acoustic pressure, acoustic intensity, time-averaged acoustic power, radiation patterns, and sound transmission paths through arbitrarily shaped vibrating structures.
Journal Article

Assessing the Importance of Radiative Heat Transfer for ECN Spray A Using the Transported PDF Method

2016-04-05
2016-01-0857
The importance of radiative heat transfer on the combustion and soot formation characteristics under nominal ECN Spray A conditions has been studied numerically. The liquid n-dodecane fuel is injected with 1500 bar fuel pressure into the constant volume chamber at different ambient conditions. Radiation from both gas-phase as well as soot particles has been included and assumed as gray. Three different solvers for the radiative transfer equation have been employed: the discrete ordinate method, the spherical-harmonics method and the optically thin assumption. The radiation models have been coupled with the transported probability density function method for turbulent reactive flows and soot, where unresolved turbulent fluctuations in temperature and composition are included and therefore capturing turbulence-chemistry-soot-radiation interactions. Results show that the gas-phase (mostly CO2 ad H2O species) has a higher contribution to the net radiation heat transfer compared to soot.
Technical Paper

Automated Vehicle Perception Sensor Evaluation in Real-World Weather Conditions

2023-04-11
2023-01-0056
Perception in adverse weather conditions is one of the most prominent challenges for automated driving features. The sensors used for mid-to-long range perception most impacted by weather (i.e., camera and LiDAR) are susceptible to data degradation, causing potential system failures. This research series aims to better understand sensor data degradation characteristics in real-world, dynamic environmental conditions, focusing on adverse weather. To achieve this, a dataset containing LiDAR (Velodyne VLP-16) and camera (Mako G-507) data was gathered under static scenarios using a single vehicle target to quantify the sensor detection performance. The relative position between the sensors and the target vehicle varied longitudinally and laterally. The longitudinal position was varied from 10m to 175m at 25m increments and the lateral position was adjusted by moving the sensor set angle between 0 degrees (left position), 4.5 degrees (center position), and 9 degrees (right position).
Technical Paper

Baxter Kinematic Modeling, Validation and Reconfigurable Representation

2016-04-05
2016-01-0334
A collaborative robot or cobot is a robot that can safely and effectively interact with human workers while performing industrial tasks. The ability to work alongside humans has increased the importance of collaborative robots in the automation industry, as this unique feature is a much needed property among robots nowadays. Rethink Robotics has pioneered this unique discipline by building many robots including the Baxter Robot which is exclusive not only because it has collaborative properties, but because it has two arms working together, each with 7 Degrees Of Freedom. The main goal of this research is to validate the kinematic equations for the Baxter collaborative robot and develop a unified reconfigurable kinematic model for the Left and Right arms so that the calculations can be simplified.
Technical Paper

Behavior of Adhesively Bonded Steel Double Hat-Section Components under Axial Quasi-Static and Impact Loading

2016-04-05
2016-01-0395
An attractive strategy for joining metallic as well as non-metallic substrates through adhesive bonding. This technique of joining also offers the functionality for joining dissimilar materials. However, doubts are often expressed on the ability of such joints to perform on par with other mechanical fastening methodologies such as welding, riveting, etc. In the current study, adhesively-bonded single lap shear (SLS), double lap shear (DLS) and T-peel joints are studied initially under quasi-static loading using substrates made of a grade of mild steel and an epoxy-based adhesive of a renowned make (Huntsman). Additionally, single lap shear joints comprised of a single spot weld are tested under quasi-static loading. The shear strengths of adhesively-bonded SLS joints and spot-welded SLS joints are found to be similar. An important consideration in the deployment of adhesively bonded joints in automotive body structures would be the performance of such joints under impact loading.
Technical Paper

Behavior of Adhesively Bonded Steel Double-Hat Section Components under Lateral Impact Loading

2018-04-03
2018-01-1447
Recent experimental studies on the behavior of adhesively-bonded steel double-hat section components under axial impact loading have produced encouraging results in terms of load-displacement response and energy absorption when compared to traditional spot-welded hat- sections. However, it appears that extremely limited study has been carried out on the behavior of such components under transverse impact loading keeping in mind applications such as automotive body structures subject to lateral/side impact. In the present work, lateral impact studies have been carried out in a drop-weight test set-up on adhesively-bonded steel double-hat section components and the performance of such components has been compared against their conventional spot-welded and hybrid counterparts. It is clarified that hybrid components in the present context refer to adhesively-bonded hat-sections with a few spot welds only aimed at preventing catastrophic flange separations.
X